• 제목/요약/키워드: nickel plating

검색결과 266건 처리시간 0.03초

STUDY FOR DEVELOPMENT OF AN ADDITIVE FOR SEMI-BRIGHTNESS FINISH FOR NICKEL ELECTOPLATING

  • Han, M.K.;Lee, J.K.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.208-210
    • /
    • 1999
  • A new additive for semi-brightness finish in nickel electroplating, having a quarternary ammonium salt structure, has been developed in this study. The effectiveness of the new additive was tested in laboratory-scale eletroplating tests as well as in a full-scale factory plating line. An examination of the plated surface showed that the new additive is as good as the one produced by the most commonly used additive in the nickel plating industry. The plated surface was examined by SEM, EPMA, and Reflectance Spectroscopy, and was found to be compatible to the one obtained with commercial additives. The new additive has a shelf life comparable with those of other commercially available additives. The additive developed in this study has an excellent potential to be used commercially.

  • PDF

황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구 (A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe)

  • 이응조;노재호
    • 한국표면공학회지
    • /
    • 제22권3호
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

구리와 니켈 금속이 무전해 도금된 폴리에스테르 섬유의 구조에 따른 전자파 차폐성 (Electromagnetic Wave Shielding Effectiveness of Electroless Chemical Copper and Nickel Plating PET fabrics)

  • 천태일;박정환
    • 한국의류산업학회지
    • /
    • 제10권3호
    • /
    • pp.385-388
    • /
    • 2008
  • Four kinds of PET fabrics were coated with Copper and Nickel by electroless chemical plating, and the electromagnetic wave shielding effectiveness for those samples have been examined. The shielding effectiveness showed between 90 dB and 70 dB, and it related to the fabric structure, such as cover factor and cloth density. The dense fabric structure showed the better shielding effect.

다공성 탄소전극기지상의 무전해 니켈도금에 관한 연구 (Electroless Nickel Plating on Porous Carbon Substrate)

  • 천소영;임영목;김두현;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제17권1호
    • /
    • pp.75-80
    • /
    • 2010
  • 다공성 탄소전극기지 위의 무전해 니켈도금에 관한 연구를 하였다. 다공성 탄소전극기지로는 다공도가 20 ${\mu}m$ 이상인 것과 16~20 ${\mu}m$ 인 것을 사용하였다. 소수성인 탄소 표면은 $60^{\circ}C$ 이상의 암모니아 용액에 침적함으로써 그 표면 성질이 친수성으로 변화 되었고, 40분 이상 침적 시 접촉각이 $20^{\circ}$ 이하까지 측정 되었다. 도금욕의 pH가 증가됨에 따라 탄소기지 위에 도금된 니켈 도금층의 인의 석출량은 감소하였으며 니켈 도금층이 결정질 구조를 갖는 현상이 관찰되었다. 도금층의 두께는 pH가 증가함에 따라 증가하였다. 활성화 처리를 위한 $PdCl_2$의 농도에 따른 도금층의 두께 변화는 없었으나, 도금에 필요한 $PdCl_2$의 최소농도는 5 ppm 이상인 것으로 나타났다.

Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater

  • Oh, Eunjoo;Kim, Joohyeong;Ryu, Jun Hee;Min, Kyung Jin;Shin, Hyun-Gon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • 제11권3호
    • /
    • pp.201-206
    • /
    • 2020
  • Electrodialysis (ED) is used in wastewater treatment, during the processing and recovery of beneficial materials, to produce usable water. In this study, sulfate and chlorine ions, which are the anions majorly used for electroplating, were studied as factors affecting the recovery of copper, nickel and water from wastewater by electrodialysis. Although the removal rates of copper and nickel ions were slightly higher with the use of chlorine ions than of sulfate ions, the removal efficiencies were above 99.9% under all experimental conditions. The metal ions of the plating wastewater flowed through the ion exchange membrane of the diluate tank and the concentrate tank while all the water moved together due to electro-osmosis. The migration of water from the diluate tank to the concentrate tank was higher in the presence of a monovalent chloride ion compared to that of a divalent sulfate ion. When sulfate was the anion used, the recoveries of copper and nickel increased by about 25% and 30%, respectively, as compared to the chloride ion. Therefore, when divalent ions such as sulfate are present in the electrodialysis, it is possible to reduce the movement amount of water and highly concentrate the copper and nickel in the plating wastewater.

Ni-SiC 복합도금층의 내마모성에 관한 연구 (A study on the wear resistance of Ni-SiC composite plating)

  • 김성호;한혜원;장현구
    • 한국표면공학회지
    • /
    • 제29권1호
    • /
    • pp.26-35
    • /
    • 1996
  • The Ni-SiC composite plating was performed in a Watt nickel solution and the wear resistance of the composite layer was studied on a pin-on-flat type wear tester. The volume losses and friction coefficients were measured. It was found that the quantity of SiC powder in the composite layers was affected by SiC concentration, pH, temperature, and agitation speed in the Watt nickel solution. The hardness and wear resistance of the coatings increased with SiC content. The quantity of SiC powder in the coating from a nickel sulfamate solution is larger than that of the Watt nickel solution, because the amount of nickel ions absorbed on the SiC powder in the nickel sulfamate solution is greater than that in the Watt's solution.

  • PDF

Influence of Nickel Electroplating on Hydrogen Chloride Removal of Activated Carbon Fibers

  • Park, Soo-Jin;Jin, Sung-Yeol;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제5권4호
    • /
    • pp.186-190
    • /
    • 2004
  • In this work, a nickel metal (Ni) electroplating on the activated carbon fiber (Ni/ACFs) surfaces was carried out to remove the toxic hydrogen chloride (HCl) gas. The surface properties of the treated ACFs were determined by using nitrogen adsorption isotherms at 77 K, SEM, and X-ray diffraction (XRD) measurements. HCl removal efficiency was confirmed by a gas-detecting tube technique. As a result, the nickel metal contents on the ACF surfaces were increased with increasing the plating time. And, it was found that the specific surface area or the micropore volume of the ACFs studied was slightly decreased as increasing the plating time. Whereas, it was revealed that the HCl removal efficiency containing nickel metal showed higher efficiency values than that of untreated ACFs. These results indicated that the presence of nickel metal on the ACF surfaces played an important role in improving the HCl removal over the Ni/ACFs, due to the catalytic reactions between nickel and chlorine.

  • PDF

Feasible waste liquid treatment from electroless nickel-plating by intense magnetic field of HTS bulk magnets

  • Oka, T.;Furusawa, M.;Sudo, K.;Dadiel, L.;Sakai, N.;Seki, H.;Miryala, M.;Murakami, M.;Nakano, T.;Ooizumi, M.;Yokoyama, K.;Tsujimura, M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.37-40
    • /
    • 2021
  • Nickel (Ni) is a kind of the rare earth resources. Since Ni-containing waste is drained after several plating operations in the factories, the effective recycling technique has been expected to be introduced. An actual magnetic separation technique using HTS bulk magnet generating the strong magnetic field has succeeded in collecting the paramagnetic slurry containing Ni-sulphate coarse crystals which were fabricated from the Ni-plating waste. The Ni compound in the collected slurry was identified as NiSO4/6H2O, showing slight differences in the particle size and magnetic susceptibility between the samples attracted and not-attract to the magnetic pole. This preferential extraction suggests us a novel recycling method of Ni resource because the compound is capable of recycling back to the plating processes as a raw material.