• 제목/요약/키워드: nickel plating

검색결과 266건 처리시간 0.03초

Electroplating of Nickel on Nickel Titanate Modified Mild Steel Surface

  • Beenakumari, K.S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권2호
    • /
    • pp.57-60
    • /
    • 2013
  • Nickel is a good electrocatalytic metal and nickel electrodes find many applications in different electrochemical fields. The nickel plated electrodes were prepared by electro-deposition technique on mild steel surface modified with in-situ deposition of nickel titanate. The SEM images shows that the nickel plating on nickel titanate modified mild steel shows better adherence than the nickel plating on bare mild steel surfaces. The extent of polarization of the nickel plating on mild steel with nickel titanate was lower than that of nickel plating on mild steel. The incorporation of nickel titanate on mild steel surface before nickel plating enhances physical, chemical and electrochemical properties of the plating film.

무전해 니켈 도금법을 이용한 고성능 도전사의 제조 (Fabrication of Highly Conductive Yarn using Electroless Nickel Plating)

  • 홍소야;이창환;김주용
    • 한국염색가공학회지
    • /
    • 제22권1호
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

압력용기 클래드 보수용 전해니켈도금 인자 관계 연구 (Variables of Electrolytic Nickel Plating for RPV Cladding Repair)

  • 김민수;황성식;김동진;이동복
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.148-153
    • /
    • 2019
  • Pure nickel with a thickness of 1 mm was plated on type 304 stainless steels and low alloy steels (JIS G3131 SPHC) by electrolytic plating method in a circulating plating bath. Plating performance, mechanical properties, and surface characteristics were evaluated in terms of pretreatment process, anode material, pH, current density, and flow rate of the plating solution. Addition of hydrochloric acid during pre-treatment process improved the adhesion performance of plating. To improve plating efficiency, it is desirable to use S-nickel rather than electrolytic nickel. The use of S-nickel was also confirmed to be desirable for maintaining the pH and concentration of the plated solution. The defect of the plating using S-nickel anode produced pit on the surface. However, it is believed that proper control can be obtained by increasing the flow rate. Internal stress and hardness values of electrolytic nickel plating according to current density need to be carried out with further studies.

Electroless Nickel Plating on Fibers for the Highly Porous Electrode

  • Cheon, So-Young;Park, So-Yeon;Rhym, Young-Mok;Kim, Doo-Hyun;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.117-120
    • /
    • 2010
  • Materials used as fuel cell electrode should be light, high conductive, high surface area for reaction, catalytic surface and uniformity of porous structure. Nickel is widely used in electrode materials because it itself has catalytic properties. When used as electrode materials, nickel of only a few im on the surface may be sufficient to conduct the catalytic role. To manufacture the nickel with porous structure, Electroless nickel plating on carbon fiber be conducted. Because electroless nickel plating is possible to do uniform coating on the surface of substrate with complex shape. Acidic bath and alkaline bathe were used in electroless nickel plating bath, and pH and temperature of bath were controlled. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As increasing pH and temperature, the rate of electrolee plating was increased. The content of phosphorous in nickel deposit was higher in acidic bath than that in alkaline bath. As a result, the uniform nickel deposit on porous carbon fiber was conducted.

니켈박막의 공정조건에 따른 탄성계수 변화 (Sensitivity of Electroplating Conditions on Young's Modulus of Thin Film)

  • 김상현
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.88-95
    • /
    • 2008
  • Young's modulus of electroplated nickel thin film is systematically investigated using the resonance method of atomic force microscope. Thin layers of nickel to be measured are electroplated onto the surface of an AFM silicon cantilever and Young's modulus of plated nickel film is investigated as a function of process conditions such as the plating temperature and applied current density. It is found that Young's modulus of plated nickel thin film is as high as that of bulk nickel at low plating temperature or low current density, but decreases with increasing plating temperature or current density. The results imply that the plating rate increases as increasing the plating temperature or current density, therefore, slow plating rate produces a dense plating material due to the sufficient time fur nickel ions to form a dense coating.

열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향 (Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment)

  • 박일초;김성종
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.64-71
    • /
    • 2024
  • The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.

Analysis of Ni/Cu Metallization to Investigate an Adhesive Front Contact for Crystalline-Silicon Solar Cells

  • Lee, Sang Hee;Rehman, Atteq ur;Shin, Eun Gu;Lee, Doo Won;Lee, Soo Hong
    • Journal of the Optical Society of Korea
    • /
    • 제19권3호
    • /
    • pp.217-221
    • /
    • 2015
  • Developing a metallization that has low cost and high efficiency is essential in solar-cell industries, to replace expensive silver-based metallization. Ni/Cu two-step metallization is one way to reduce the cost of solar cells, because the price of copper is about 100 times less than that of silver. Alkaline electroless plating was used for depositing nickel seed layers on the front electrode area. Prior to the nickel deposition process, 2% HF solution was used to remove native oxide, which disturbs uniform nickel plating. In the subsequent step, a nickel sintering process was carried out in $N_2$ gas atmosphere; however, copper was plated by light-induced plating (LIP). Plated nickel has different properties under different bath conditions because nickel electroless plating is a completely chemical process. In this paper, plating bath conditions such as pH and temperature were varied, and the metal layer's structure was analyzed to investigate the adhesion of Ni/Cu metallization. Average adhesion values in the range of 0.2-0.49 N/mm were achieved for samples with no nickel sintering process.

전기분해법(電氣分解法)을 이용(利用)한 무전해(無電解) 니켈 도금폐액(鍍金廢液)으로부터 니켈 회수(回收) (Recovery of Nickel from Electroless Plating Wastewater by Electrolysis Method)

  • 이화영
    • 자원리싸이클링
    • /
    • 제21권2호
    • /
    • pp.41-46
    • /
    • 2012
  • 전해채취법을 이용하여 무전해 니켈 도금폐액으로부터 니켈을 회수하기 위한 실험을 수행하였다. 이를 위해 우선 가성소다를 첨가하는 방법으로 무전해 니켈 도금폐액중의 니켈을 수산화물 형태로 침전분리하였다. 또한, 니켈 수산화물을 황산 용액으로 용해시킨 니켈 수용액을 대상으로 전기분해를 실시하였다. 실험결과, 가성소다를 첨가하여 pH 10 이상으로 조절하면 99% 이상의 Ni을 수산화물로 침전시킬 수 있는 것으로 나타났다. 한편, 니켈 수용액으로부터 전해채취를 통한 Ni의 석출시 전류밀도가 증가할수록 전류효율은 감소하는 것으로 나타났다.

Recovery of Nickel from Spent Electroless Nickel Plating Baths

  • Tanaka, Mikiya;Kobayashi, Mikio;Seki, Tsutomu
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.270-274
    • /
    • 2001
  • With Increasing importance of electroless nickel plating technology in many fields such as electronic and automobile industries, the treatment of the spent baths is becoming a serious problem. These spent baths contain iron and zinc as impurities, organic acids as complexing reagents, and phosphonate ions as oxidized species of tile reducing reagent. as well as several grams per liter of nickel. The spent baths are currently treated by conventional precipitation method. but a mettled with no sludge generation is desired. This work aims at establishing a recycling process of nickel from tile spent baths using solvent extraction. Extraction behaviors of nickel. iron. and zinc in various 쇼pes of real spent baths are investigated as a function of pH using LIX841, di (2-ethylhexyl)phosphoric acid (D2EHPA), and PC88A as tile extractants. Nickel is extracted by LIX84I at the equilibrium pH of more than 6 with high efficiency. For the weakly acid baths. iron and zinc are extracted by D2EHPA or PC88A without adjusting the pH of the baths leaving nickel in the aqueous phase. Stripping of nickel from LIX84I with sulfuric acid is also investigated. It is shown that concentrated nickel sulfate solution (> 100 ㎏-Ni/㎥) is obtained. This solution can be reused in the electroless plating process. Based on these findings, flow sheets for recovering nickel from the spent baths are proposed.

  • PDF