• Title/Summary/Keyword: nickel (II)

Search Result 214, Processing Time 0.022 seconds

Synthesis and Structure of Nickel(II) Complex with N-Benzylisonitrosoacetylacetone Imine (N-Benzylisonitrosoacetylacetone Imine Ni(II) 착물의 합성 및 구조)

  • Byung Kyo Lee;Dae Sub O;Heung Lark Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.536-542
    • /
    • 1988
  • A nickel(Ⅱ) complex, Ni(IAA-NBz) (IAA-NBz') with ligand, N-benzylisonitrosoacetyl acetone imine (H-IAA-NBz) has been synthesized. This complex is very stable at room temperature and has cis-form and trans-form isomers. The ratio of nickel (Ⅱ) ion and ligand combined is 1 : 2. The elemental analysis, ir, nmr. electronic spectra and mass spectra have been studied. It is suggested from these studies that the isonitroso group of one ligand, H-IAA-NBz coordinates to nickel(Ⅱ)ion through the nitrogen atom to form five-membered ring, while that of the other ligand, H-IAA-NBz coordinates to nickel (Ⅱ) ion through the oxygen atom to form six-membered ring in square-planar complex.

  • PDF

Electrochemical Properties of Nickel(II) Complexes with Multidentate N, O-Schiff Base Ligands (여러 자리 산소-질소계 시프염기 리간드 니켈(II)착물의 전기화학적 특성)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Roh, Soo-Gyun
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.246-255
    • /
    • 1997
  • A series of Ni(II) complexes with multidentate N, O-Schiff base ligands: ie [bis-(salicylaldehyde) ethylenediamine(SED), bis-(salicylaldehyde) propylenediamine(SPD), bis-(salicylaldehyde) dietrylenetriamine(SDT), and bis-(salicylaldehyde) triethylenetetraamine(STT)] and Ni(II) complexes were synthesized. The Ni(II) complexes were characterized by elemental analysis, IR, UV-Vis and mass spectrometry. The stability constants of each nickel (II) complexes were determined by potentiometry in 70% dioxane-30% $H_2O$ and ethanol. The stability constants of Nickel(II) complexs increased in the order of Ni(II)-SPD

  • PDF

Study on Solid Phase Extraction and Spectrophotometric Determination of Nickel in Waters and Biological Samples

  • Hu, Qiu-Fen;Yang, Guan-Gyu;Huang, Zhang-Jie;Yin, Jia-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.545-548
    • /
    • 2004
  • A sensitive, selective and rapid method for the determination of nickel based on the rapid reaction of nickel(II) with QADMAA and the solid phase extraction of the Ni(II)-QADMAA chelate with $C_{18}$ membrane disks has been developed. In the presence of pH 6.0 buffer solution and sodium dodecyl sulfonate (SDS) medium, QADMAA reacts with nickel to form a violet complex of a molar ratio of 1 : 2 (nickel to QADMAA). This chelate was enriched by solid phase extraction with $C_{18}$ membrane disks. An enrichment factor of 50 was obtained by elution of the chelates form the disks with the minimal amount of isopentyl alcohol. The molar absorptivity of the chelate was $1.32{\times}10^5L\;mol^{-1}cm^{- 1}$ at 590 nm in the measured solution. Beer's law was obeyed in the range of 0.01-0.6 ${\mu}$g/mL. This method was applied to the determination of nickel in water and biological samples with good results.

Synthesis and Characterization of New Polyaza Non-macrocyclic and Macrocyclic Nickel(II) Complexes Containing One 1,3-Diazacyclohexane Ring

  • Lee, Yun-Taek;Jang, Bo Woo;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2125-2130
    • /
    • 2013
  • A new nickel(II) complex $[NiL^1]^{2+}$ ($L^1$ = 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl-1,3-diazacyclohexane) containing one 1,3-diazacyclohexane ring has been prepared selectively by the metal-template condensation of formaldehyde with N-(2-aminoethyl)-1,3-propanediamine and ethylenediamine at room temperature. The complex reacts with nitroethane and formaldehyde to yield the pentaaza macrocyclic complex $[NiL^2]^{2+}$ ($L^2$ = 8-methyl-8-nitro-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one C-$NO_2$ pendant arm. The reduction of $[NiL^2]^{2+}$ by using Zn/HCl produces $[NiL^3(H_2O)]^{2+}$ ($L^3$ = 8-amino-8-methyl-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one coordinated C-$NH_2$ pendant arm that is readily protonated in acid solutions. The hexaaza macrocyclic complex $[NiL^4]^{2+}$ ($L^4$ = 8-phenylmethyl-8-nitro-1,3,6,8,10,13-hexaazabicyclo[13.3.1]heptadecane) bearing one N-$CH_2C_6H_5$ pendant arm has also been prepared by the reaction of $[NiL^1]^{2+}$ with benzylamine and formaldehyde. The nickel(II) complexes of $L^1$, $L^2$, and $L^4$ have square-planar coordination geometry in the solid states and in nitromethane. However, they exist as equilibrium mixtures of the square-planar $[NiL]^{2+}$ (L = $L^1$, $L^2$, or $L^4$) and octahedral $[NiL(S)_2]^{2+}$ species in various coordinating solvents (S); the proportion of the octahedral species $[NiL(S)_2]^{2+}$ is strongly influenced by the ligand structure and the nature of the solvent. Synthesis, spectra, and chemical properties of the nickel(II) complexes of $L^1-L^4$ are described.

Metal Complexes of Ambidentate Ligands (I). Nickel(II) Complexes of Isonitrosobenzoylacetone Imine Derivatives (Ambidentate Ligand의 금속 착물 (제1보). Isonitrosobenzoylacetone Imine 유도체와 니켈(Ⅱ)의 착물)

  • Man Ho Lee;Dae Sub Oh;Kwang Woo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 1978
  • Novel nickel(II) complexes of the type Ni(IBA-NH)(IBA-NR), where IBA-NH and IBA-NR (R=H, methyl, ethyl, n-propyl, iso-propyl, n-butyl or benzyl) represent isonitrosobenzoylacetone imine and its N-alkyl derivative respectively, have been prepared. The ir, nmr, and electronic spectra and magnetic moment of the nickel(II) complexes have been studied. It has been determined that the isonitroso group of IBA-NH coordinates to nickel through the oxygen to form 6-membered chelate ring and that of IBA-NR coordinates to nickel through the nitrogen to form 5-membered ring in square-planar Ni(IBA-NH) (IBA-NR). The coordination manner of the ligands is similar to that of isonitrosoacetylacetone imines obtained by Bose, et al.

  • PDF

Electrochemical Properties of Binuclear Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base in Aprotic Solvents (1) (비수용매에서 이핵성 네자리 Schiff Base Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 1 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Seo Seong-Seob;Lee Song-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.24-37
    • /
    • 1991
  • We synthesized the binuclear Tetradentate Schiff base nickel(II) and copper(II) complexes ; [Ni(II)$_2$(SMPO)$_2$(L)$_2$], [Ni(II)$_2$(SPPD)$_2$(L)$_2$] and [Cu(II)$_2$(SMPD)$_2$] and [Cu(II)$_2$(SPPD)$_2$] (where, L : Py, DMSO and DMF). We identified the structure of these complexes by elemental analysis, IR-spectrum, T.G.A, D.S.C and ESR measurements. According to the results of cyclic voltammetry and DPP measurements in aprotic solvent included 0.1M TEAP as supporting electrolyte, we knew that diffusional controlled redox process of one step with one electron was irreversible process in 0.1M TEAP-Py solution. Also it was reversible or quasi reversible process in 0.1M TEAP-DMSO solution and reversible or E.C reaction mechanism in 0.1M TEAP-DMF solution at mononuclear complexes ; [Cu(II)(SOPD)] and [Ni(II)(SOPD)(L)$_2$]. But, we knew that diffusional controlled redox process of two step for one electron of binuclear complexes was as follows. The values of redox potential for dimeric complexes in 0.1M TEAP-L solution (where, L ; Py, DMSO and DMF) with scan rate 100mV/sec.

  • PDF