• Title/Summary/Keyword: new health technology

Search Result 1,283, Processing Time 0.028 seconds

Comparative Evaluation of Kerma Area Product and New Fundamental of Kerma Area Product on Radiography (방사선촬영에서 면적선량 및 새로운 실질면적선량 개념의 비교 평가)

  • Choi, Woo Cheol;Kim, Yongmin;Kim, Jung Su
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.53-58
    • /
    • 2021
  • Kerma Area Product (KAP) is best indicator of radiation monitoring on radiographic examinations. KAP can be measured differently depending on the X-ray irradiation area, air kerma, souce-skin distance, type of equipment, etc. The major factors are exposure area and the air krema. The KAP currently used only considers the exposure area with X-rays and has a problem that KAP is always excessively overestimated from the dose received by an actual subject. Therefore, in this study, in order to measure the accurate KAP, a new area dose calculation that can be calculated by dividing the area where the actual X-ray is irradiated is presented, and the KAP is the real area. We compared and analyzed how much it was overestimated compared to the dose. The Skull AP projection and seven other projection were compared and analyzed, and the KAP was overestimated in each test by 52% to 60%. In this way, the effective KAP (EKAP) calculation developed through this study should be utilized to prevent extra calculation of the existing KAP, and only the accurate patient subject area should be calculated to derive the accurate area dose value. EKAP is helpful for control the patient's exposure dose more finely, and it is useful for the quality control of medical radiation exposure.

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal;Mohamed Amin;S.H. Nagib;Hassan Youssef;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.499-516
    • /
    • 2023
  • To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

Prospect of Sustainable Organic Yam Production in Lae, Papua New Guinea (파푸아뉴기니지역의 지속적 마 재배 방향)

  • Chang, K.J.;Seo, G.S.;Ahn, C.H.;Huang, D.S.;Byun, J.M.;Park, C.H.;Jeon, U.S.;Elick, G.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.181-193
    • /
    • 2012
  • There is enough precipitation and sunshine in Lae, Papua New Guinea. pH in soil of yam field averaged 6.4, that is suitable for yam growing. However, a great variation in pH was found from 3.7 to 6.4 in different locations around Lae. EC in the soil was 0.18 mS/cm that has shown short of soil nutrition but ORP was 393mV, allowing to be ideal for yam cultivation. Thoughtful management for soil fertility including supply of organic 1matters is needed for the sustainable organic yam production in Lae region, PNG.

Damage detection of subway tunnel lining through statistical pattern recognition

  • Yu, Hong;Zhu, Hong P.;Weng, Shun;Gao, Fei;Luo, Hui;Ai, De M.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • Subway tunnel structure has been rapidly developed in many cities for its strong transport capacity. The model-based damage detection of subway tunnel structure is usually difficult due to the complex modeling of soil-structure interaction, the indetermination of boundary and so on. This paper proposes a new data-based method for the damage detection of subway tunnel structure. The root mean square acceleration and cross correlation function are used to derive a statistical pattern recognition algorithm for damage detection. A damage sensitive feature is proposed based on the root mean square deviations of the cross correlation functions. X-bar control charts are utilized to monitor the variation of the damage sensitive features before and after damage. The proposed algorithm is validated by the experiment of a full-scale two-rings subway tunnel lining, and damages are simulated by loosening the connection bolts of the rings. The results verify that root mean square deviation is sensitive to bolt loosening in the tunnel lining and X-bar control charts are feasible to be used in damage detection. The proposed data-based damage detection method is applicable to the online structural health monitoring system of subway tunnel lining.

Automatic identification and analysis of multi-object cattle rumination based on computer vision

  • Yueming Wang;Tiantian Chen;Baoshan Li;Qi Li
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.519-534
    • /
    • 2023
  • Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.

Measurements of pedestrian's ioad using smartphones

  • Pan, Ziye;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.771-777
    • /
    • 2017
  • The applications of smartphones or other portable smart devices have dramatically changed people's lifestyle. Researchers have been investigating useage of smartphones for structural health monitoring, earthquake monitoring, vibration measurement and human posture recognition. Their results indicate a great potential of smartphones for measuring pedestrian-induced loads like walking, jumping and bouncing. Smartphone can catch the device's motion trail, which provides with a new method for pedestrain load measurement. Therefore, this study carried out a series of experiments to verify the application of the smartphone for measuring human-induced load. Shaking table tests were first conducted in order to compare the smartphones' measurements with the real input signals in both time and frequency domains. It is found that selected smartphones have a satisfied accuracy when measuring harmonic signals of low frequencies. Then, motion capture technology in conjunction with force plates were adopted in the second-stage experiment. The smartphone is used to record the acceleration of center-of-mass of a person. The human-induced loads are then reconstructed by a biomechanical model. Experimental results demonstrate that the loads measured by smartphone are good for bouncing and jumping, and reasonable for walking.

Prototype development for Mobile Tongue diagnosis development (모바일 설진기 개발을 위한 프로토타입 개발)

  • So, Ji Ho;Jang, Jun-Su;Kim, Jihye;Kim, Kahye;Choi, Woosu;Kim, Keun-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.207-212
    • /
    • 2017
  • Tongue diagnosis is widely used in Oriental medicine and Western medicine. The reason is that human tongue provides various information. Analysis of the tongue can reveal various diseases and health information. Tongue diagnosis using mobile environment provides convenience for users. With this, it is possible to diagnose the disease according to the user anytime and anywhere. This can show a new paradigm of medical devices.

Elimination Effect of Formaldehyde, Acetaldehyde and Total Volatile Organic Compounds from Car Felts using Nano-carbon Materials

  • Cho, Wan-Goo;Park, Seung-Gyu;Kim, Hyung-Man
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • We proposed the new nano-carbon ball (NCB) materials for eliminating the total volatile organic compounds(TVOCs) from the felt which is built in the car. The concentrations of acetaldehyde and formaldehyde of the original felts were varied upon the different production lots. Acetaldehyde in the felt can be eliminated to target level($0.2{\mu}g$) after introducing 0.5 wt% of NCB into the felt. Detector tube method for analyzing formaldehyde gas was more accurate than HPLC method. Formaldehyde can be eliminated to target level (64 ppb) after introducing 0.5 wt% of NCB into the felt. We also found that TVOC can be reduced to target level ($0.32{\mu}g$) after introducing 2.0 wt% of NCB. Upon introducing small amounts of NCB into the felt, it was possible that the level of formaldehyde, acetaldehyde and TVOC formed from the felts can be reduced to the target level. We also suggest the effective analyzing method of TVOCs.

Ubiquitous Architectural Framework for UbiSAS using Context Adaptive Rule Inference Engine

  • Yoo, Yoon-Sik;Huh, Jae-Doo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.243-246
    • /
    • 2005
  • Recent ubiquitous computing environments increasingly impact on our lives using the current technologies of sensor network and ubiquitous services. In this paper, we propose ubiquitous architectural framework for ubiquitous sleep aid service(UbiSAS) in the subset of ubiquitous computing for refreshing of human's sleep. And we examine technical feasibility. Human can recover his health through refreshing sleep from fatigue. Ubiquitous architectural framework for UbiSAS in digital home offers agreeable sleeping environment and improves recovery from fatigue. So we present new concept of ubiquitous architectural framework dissolving stress. Specially, we apply context to context-aware framework module. This context is transferred to context adaptive inference engine which has service invocation function in intelligent agent module. Ubiquitous architectural framework for UbiSAS using context adaptive rule inference engine without user intervention is technical issue. That is to say, we should take sleep comfortably during our sleeping. And sensed information during sleeping is changed to context-aware information. This presents significant information in context adaptive rule inference engine for UbiSAS. This information includes all sleeping state during sleeping in context-aware computing technique. So we propose more effective and most suitable ubiquitous architectural framework using context adaptive rule inference engine for refreshing sleep in this paper.

  • PDF