• Title/Summary/Keyword: new fuzzy controller

Search Result 425, Processing Time 0.041 seconds

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬

  • 강철구;곽희성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.235-240
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Three dimensional look-up table is used toreduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

  • PDF

Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller (퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어)

  • 이홍균;이정철;김종관;정동화
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller

  • Han Chang-Wook;Park Jung-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.236-243
    • /
    • 2005
  • This paper presents a new stochastic approach for solving combinatorial optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm (GA). This approach combines GA with simulated annealing (SA) to improve the performance of GA. GA and SA have complementary strengths and weaknesses. While GA explores the search space by means of population of search points, it suffers from poor convergence properties. SA, by contrast, has good convergence properties, but it cannot explore the search space by means of population. However, SA does employ a completely local selection strategy where the current candidate and the new modification are evaluated and compared. To verify the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing an inverted pendulum on a cart is considered.

A Design of Auto-Tuning PID Controller using Fuzzy Reasoning (퍼지추론을 이용한 자동동조 PID 제어기의 설계)

  • Park, S.J.;Hong, H.P.;Park, J.K.;Lim, Y.C.;Cho, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.345-348
    • /
    • 1991
  • This paper describes a new auto tuning method for the intelligent PID control system. This new method is hosed on the settling time of the process and has been introduced into auto-tuning PID controller using fuzzy logic. The performance of the controller is measured by computer simulation. Simulation shows good results that controller searches well the optimal values of PID parameters in any conditions and the response characteristic of the control system is improved.

  • PDF

A Fuzzy-Logic Controller for an Electrically Driven Steering System for a Motorcar

  • Lee, Sang-Heon;Kim, Il-Soo;Jayantha katupitiya
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1039-1052
    • /
    • 2002
  • This paper presents an application where a Fuzzy-Logic Controller (FLC) is used at a supervisory level to implement mutual coordination of the steering of the two front wheels of a motorcar. The two front wheels are steered by two independent discrete time state feedback controllers with a view to optimize the steering slip angles. The functions of the two controllers are tied together by way of a FLC. Because of the presence of unmodelled dynamics and disturbances acting on the two sides, it is difficult to achieve the desired performance using conventional control systems. This is the primary reason that FLC is emploged to solve the problem. The results show that the implemented system achieved desired coupling between the two independent systems and thereby reduces the difference between the two steered angles.

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

A Study on the Speed Control of a Sensorless DC Motor by using a Fuzzy Controller (퍼지제어기를 이용한 센서리스 직류전동기의 속도제어에관한연구)

  • 하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 1998
  • DC Motors have been widely used in industry as driving power motors for electrical vehicles cranes and winches due to their strong starting torques and as servo-motors for position and speed control systems due to their convenience of speed control etc. Generally in the speed control systems of motors speed sensors are required and this fact results in he increased price and operating cost and in the limitted applications. This paper presents a new speed control method for sensorless DC motors. In this scheme the speed signal is estimatd by the measurement values of the armature voltage and current. A Fuzzy feedback controller instead of the conventional PID controller. Through simulations the effectiveness and usefullness of the proposed method are illustrated.

  • PDF

Auto-Tuning Method for fuzzy Controller Using Genetic Algorithms (유전 알고리즘을 이용한 퍼지 제어기의 자동 동조)

  • Rho, Gi-Gab;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.728-731
    • /
    • 1997
  • This paper proposes the systematic auto-tuning method for fuzzy controller using genetic algorithm(GA). In general, the design of fuzzy logic controller has difficulties in the acquisition of expert's knowledge and relies to a great extent on heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may have ignored. Proposed genetic algorithm searches the optimal rule structure, parameters of membership functions and scaling factors simultaneously and automatically by a new genetic coding format. Inverted pendrum system is provided to show the advantages of the proposed method.

  • PDF

On the Ship's Berthing Control by introducing the Fuzzy Neural Network (선박 접리안의 퍼지학습제어)

  • 구자윤;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.69-81
    • /
    • 1994
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model, but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics at low speed. In this paper, the authors propose a new berthing control system which can evaluate as closely as cap-tain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's knowledge. This berthing controller consists of the navigation subsystem FNN controller and the berthing subsystem FNN controller. The learning data are drawn from Ship Handling Simulator (NavSim NMS-90 MK Ⅲ) and represent the ship motion characteristics internally. According to learning procedure, both FNN controllers can tune membership functions and identify fuzzy control rules automatically. The verified results show the FNN controllers effective to incorporate captain's knowledge and experience of berthing.

  • PDF

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF