• 제목/요약/키워드: new energy utilization system

검색결과 199건 처리시간 0.028초

친환경 농촌마을계획을 위한 주거 에너지 이용실태 조사 분석 (An Investigation and Analysis on Actual Condition of Energy Utilizations in Farmhouse for Environmental-friendly Planning of Rural Villages)

  • 남상운;김대식
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.55-62
    • /
    • 2007
  • Actual states of energy utilizations were investigated and analyzed on three representative rural villages in Chungcheongnam-Do. Rural residents were almost using the ondol boiler as a heating facility and oil(diesel, kerosene) and electricity(night thermal-storage power service) as a heating energy. There were a few households using briquette or firewood in a fuel hole with Korean hypocaust. Most of their cooking facilities were gas ranges using LPG. The most popular hot-water supply system was an oil boiler and the next was an electricity boiler. The amount of energy use in a rural household generally showed 20,000 to 40,000 won/month of the electric power rate, 400 to 800 liter/year of the oil and 60 to 120 kg/year of the LPG. Prompt measures should be taken to promote the spread of new and renewable energy such as solar heat, biomass and wind power, etc.

SOLAR PHOTOVOLTAICS IN INDIA : A STATUS REVIEW

  • DUTTA, VIRESH
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.130-133
    • /
    • 2006
  • Solar Photovoltaics (SPV) In India has become an important renewable source of energy particularly for rural and remote areas. The vastness of the country and the requirements of electricity in far-flung villages makes SPV very attractive, with inherent technological advantages providing additional boost. This has been recognized very early by Govt. Of India and Ministry of Non-Conventional Sources of Energy (MNES) has been entrusted with promoting SPV usage in the country. Rural electrification through SPV systems is one of the programmes which is expected to provide fillip to PV industry in the country. PV Industry in India is very well established with capability of solar cell fabrication and module fabrication as well as Balance of System design and fabrication. There several R&D groups in the academic institutions who are involved in improving solar cells efficiency, thin film solar cells and PV instrumentation. Thus, India provides a ready market for large scale utilization of solar energy through SPV technology.

  • PDF

임산 폐기물의 연소 및 에너지이용 시스템 개발에 관한 연구 (Study on the Development of Utilization System for Wasted Forest Products Biomass Energy)

  • 이형우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.307-319
    • /
    • 2005
  • 인류에게 있어 가장 중요한 연료의 역할을 충실히 해왔던 임산자원이 화석계 에너지원의 고갈과 환경오염 문제의 급부상으로 임산자원의 신재생에너지원으로서의 잠재력이 다시 관심의 대상이 되고 있다. 본 연구에서는 임산자원의 에너지화와 그 산업적 응용을 위하여 원료의 수급체계를 검토, 확립하는 한편, 폐목질자원을 펠릿화한 목재펠릿 연료의 제조공정을 국내 환경을 고려하여 고효율화하는 동시에 본 연료를 효과적으로 이용할 수 있는 시스템을 개발하고자 하였다.

  • PDF

가솔린 연료형 SOFC시스템 성능 평가에 관한 연구 (Performance Analysis of Gasoline Fueled Marine Solid Oxide Fuel Cell System)

  • 오진숙;이경진;김선희;박상균;김만응;임태우;김종수;오세진;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.740-749
    • /
    • 2011
  • 온실가스 및 대기오염물질 배출 규제는 고효율 및 친환경에 적합한 새로운 선박용 동력장치의 필요성을 제기하고 있다. 최근 이와 같은 문제들을 근본적으로 해결하기 위한 지속가능한 방법으로서 연료전지를 선박의 동력발생장치로 도입하고자 하는 검토가 진행되고 있다. 본 논문은 가솔린 연료를 기반으로 한 고체산화물형 연료전지시스템의 성능 특성을 분석한 것으로 스택의 작동온도, 전류밀도, S/C, 예열기 온도효율, 수소연료 이용률의 영향을 시뮬레이션으로 검토하고 있으며, 그 결과를 기체연료인 메탄의 경우와 비교하고 있다. 그 결과로 유기전압과 산소이용률이 시스템의 성능에 미치는 영향이 크며 가솔린 연료 시스템의 효율은 메탄의 경우보다 높지 않다는 것을 확인하였다.

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.

다층적 모델, 전략적 니치 관리 및 필요성 인자 이론을 활용한 수소 생산 기술의 효과적 관리와 활용 방안 (Effective Management and Utilization of Hydrogen Production Technology Using Multi-layered Model, Strategic Niche Management, and Need Factor Theory)

  • 김준헌;박종화;조대명
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.129-139
    • /
    • 2024
  • The significance of hydrogen economy and production technology is steadily increasing. This research reviewed strategies for utilizing hydrogen production technology by combining a multi-layer model, strategic niche management, and the need factor for Hoship. The model was validated as a strategy considering hydrogen production technology and the transformation of the energy system. Using this, a new business model for hydrogen production technology was created, finding a strategic niche and sophisticating the technology. It also proposed ways to unlock the potential of hydrogen production technology and improve its efficiency. This work contributes to the commercialization of hydrogen production technology and its role in sustainable energy conversion. It proposes a new and effective approach for utilizing hydrogen production technology, going beyond its limitations to suggest a more efficient method. It is hoped that these results will be helpful to researchers in hydrogen energy, and serve as a reference for establishing ways to utilize hydrogen production technology.

도로인접성에 따른 육상 풍력자원 잠재량 평가 (Evaluation of Onshore Wind Resource Potential According to the Road Proximity)

  • 김현구;황효정;강용혁;윤창열
    • 신재생에너지
    • /
    • 제9권4호
    • /
    • pp.13-18
    • /
    • 2013
  • Wind turbines should generally be installed at a certain distance from a road to ensure passengers' safety. In Korea, there is no clear guidance as the Ministry of Environment first proposed a road setback distance of 400 m in the Onshore Wind Farm Siting Guidelines draft proposed in July 2012, and then modified it to 1.5 times the height of the wind turbine in October of the same year. This study analyzed the dynamic range of onshore wind resource potential according to how the road setback distance is set using the Korea Wind Atlas with 100m spatial resolution made by the Korea Institute of Energy Research, the transportation network of the Ministry of Construction and Transportation, and the forest road network of the Korea Forestry Service. Owing to the geographical characteristics of Korea, where mountainous terrain accounts for 70% of the total territory, the wind resource potential within 1 km from forest roads are estimated to be 14.3 GW, 14% of Korea's total wind resource potential. In addition, the construction distance of new road for transporting wind turbines from the existing road to a wind farm site is estimated as less than 2 km. Given the limited wind resource potential and geographical constraints, an assessment system that can maximize wind resource utilization and ensure road safety at the same time, and which takes into account the regional characteristics instead of applying the fixed road setback distance across-the-road, is required.

태양광 발전 연계 수전해 시스템의 경제성 분석 (Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation)

  • 황순철;박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.

배전계통의 보호협조측면에서 본 분산전원 연계용량 검토 (Interconnection Capacity Evaluation of Distributed Resources at the Distribution Networks in View of Distribution Protection Coordination)

  • 최준호;노경수;박성준;송경빈;윤상윤
    • 조명전기설비학회논문지
    • /
    • 제21권3호
    • /
    • pp.107-116
    • /
    • 2007
  • 정부의 신 재생 에너지 관련 정책으로 인해 앞으로 국내에서 신 재생에너지원은 보급은 증가할 것으로 예상된다. 신 재생에너지원은 전원의 특성상 전력계통에 연계되어 운전하는 것이 일반적이지만 이러한 연계 운전은 전력계통 계획 및 운영상에 상당한 영향을 미치게 된다. 기존 배전계통의 전력조류는 변전소에서 수용가를 향한 단방향이며 이를 기반으로 계통운영이 이루어지고 있으나, 신 재생에너지원의 연계로 배전계통에 양방향의 전력조류가 형성되므로 기존의 보호시스템의 신뢰성 및 전력품질이 저하될 수 있다. 따라서 신 재생에너지원의 연계평가에 대한 기술적 평가절차가 필요하다. 본 논문에서는 국내 배전계통의 전형적인 보호기기인 자동 재폐로 차단기와 구분개폐기의 특성을 살펴보고, 현재의 자동재폐로 차단기-구분개폐기 보호시스템에서 분산전원의 연계용량을 검토하는 방안을 제시하고자 한다.

건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석 (Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System)

  • 인정현;이율호;강상규;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.