• Title/Summary/Keyword: new energy utilization system

Search Result 199, Processing Time 0.043 seconds

Research on void drift between rod bundle subchannels

  • Shasha Liu;Zaiyong Ma;Bo Pang;Rui Zhang;Luteng Zhang;Quanyao Ren;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3330-3334
    • /
    • 2024
  • Void drift between subchannels in a rod bundle is a crucial phenomenon affecting the calculation accuracy of thermal-hydraulic parameters in SMRs. It holds significant importance in enhancing the precision of safety analysis for SMRs. Existing research on experiment and model of void drift between rod bundle subchannels is relatively rare, and the accuracy of model calculations requires improvement. In this study, experiments on gas-liquid two-phase non-equilibrium flow were conducted to measure the redistribution of two-phase flow induced by void drift in a 1 × 2 rod bundle. The experiment results indicated that in bubby flow regime with void fraction less than 0.3, the void diffusion coefficient showed little variation with changes in void fraction. However, in slug flow and annular flow regimes with void fraction exceeding 0.3, the void diffusion coefficient significantly increased with an increase in void fraction. Furthermore, a new void drift model was developed and validated based on a subchannel code. The overall predicted uncertainty for the outlet void fraction in the rod bundle benchmark was less than 13%.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Economic Analysis of Solar Light Energy Systems in Public Facilities (공공시설물 태양광조명 에너지 시스템의 경제성 분석)

  • Yang, Jin-Kook;Shin, Sung-Joon;Park, Seung-Hwan;Lee, Min-Hyeon;Jo, Hyeon-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.304-305
    • /
    • 2014
  • New and Renewable eco-friendly energy technique can be to enable rational use of resources, as well as securing economic efficiency. Therefore, most of the public facilities must apply eco-friendly energy systems. In this study was applied the solar light energy system to the construction projects. As a result, the proposed system was implemented various effect such as the power cost savings in public facilities. In addition to, the proposed system was improved functional aspects such as improving space utilization.

  • PDF

CNN-LSTM based Wind Power Prediction System to Improve Accuracy (정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템)

  • Park, Rae-Jin;Kang, Sungwoo;Lee, Jaehyeong;Jung, Seungmin
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

Utilization of Building Colors with the Energy-Oriented Algae Façade System

  • Jo, Han-Sol;Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Purpose: Building owners or residents have concerns to strive for energy-saving and environmental conservation by utilizing with eco-friendlier energy resources for their physical environment. In this paper, an algae façade system is proposed as an energy-friendly building component to improve energy productivity and indoor environmental quality, and this study aims at verifying alternative technologies for implementing building elevations that contain various colors equipped with algae façade systems and suggesting design guidelines to enhance both building performance and design values. Method: The color of algae is basically ranged about the saturation green, and it is hardly converted to other variations. Such a problem can be resolved through the artificial lights like LED (Light Emitting Diode) lamps to mix the color from the algae and buildings could possibly change the elevation in many ways under the influence of daylight. Result: As a result, the suggested system may increase the aesthetic aspect of the building in response to environmental changes. The system cannot possibly be applied for only new construction, but also it can be utilized with the existing buildings as well. The proposed system is expected to be applied not only a new construction and any existing buildings as well, and it will cover from the environmentally friendly energy generation in the industry to a new application system for increasing energy efficiency and the beauty of building envelopes.

Thermodynamic Performance Characterictics of a Tri-Cogeneration System Based on Kalina Cycle Driven by Renewable Energy (신재생에너지로 구동되는 칼리나 사이클 기반 삼중 병합 생산 시스템의 열역학적 성능 특성)

  • HAN, CHUL HO;KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.649-655
    • /
    • 2021
  • The recently proposed Kalina based power and cooling cogeneration cycles (KPCCCs) have shown improvement in the energy utilization of the system compared to the basic Kalina cycle. This paper suggests a combined tri-cogeneration system for power, heating and cooling based on the Kalina cycle. And thermodynamic performances of the suggested system based on the first and second thermodynamic laws are parametrically investigated with respect to the ammonia mass fraction and the boiler pressure. Results showed that the thermodynamic performance of the system could be greatly improved compared to the former KPCCCs.

A Proposal of Hybrid Cooling System Coupled with Radiation Panel Cooling and Natural Ventilation (자연환기와 복사냉방을 병용한 하이브리드 시스템의 제안)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • In order to saving the energy for HVAC system of buildings, utilization of wind-induced cross ventilation is thought to be promising. However, utilization of natural ventilation alone is not sufficient for maintaining the human thermal-comfort such as in hot and humid regions. A hybrid air conditioning system with a controlled natural ventilation system, or combination of natural ventilation with mechanical air conditioning is thought to overcome the deficiency of wind-driven cross ventilation and to have significant effects on energy reduction. This paper describes a concept of hybrid system and propose a new type of hybrid system using radiational cooling with wind-induced cross ventilation. Moreover, a radiational cooling system is compared with an all-air cooling system. The characteristics of the indoor environment will be examined through CFD (Computational Fluid Dynamics) simulation, which is coupled with a radiation heat transfer simulation and with HVAC control in which the PMV value for the human model in the center of the room is controlled to attain the target value.

A Study on Distribution of Small Hydropower Resources Using GIS (지리정보시스템을 이용한 소수력자원 분포 연구)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.203-203
    • /
    • 2010
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower geographic information system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of 117 medium basins by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower geographic information system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Established system of GIS small hydropower energy can be used gather basic information for positive applications of small hydropower energy nationwide.

  • PDF

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.