• Title/Summary/Keyword: new effective temperature

Search Result 457, Processing Time 0.029 seconds

NIR DIODE ARRAY SPECTROMETERS ON AGRICULTURAL HARVEST MACHINES OVERVIEW AND OUTLOOK

  • Rode, Michael
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1172-1172
    • /
    • 2001
  • Compact Near Infrared Diode Array Spectrometers offer new possibilities for on line quality assurance in the agricultural sector. Due to their speed and complete robustness towards temperature fluctuations and mechanical shock Diode Array Spectrometers are suitable for the use on Agricultural Harvest Machines. The growing consumer consciousness of food quality in combination with falling manufacturing prices demands procedures for an effective quality control system. The various conventional types of NIR instruments which have so far been used in laboratories are unsuitable for mobile applications under the rough conditions of field cropping not only because of their slow speed of measurement but also because of their shock sensitive filter wheels and monochromators necessary for fractionating polychromatic light. Another advantage of the on line use is the reduction of the sampling error because of the continuously measurement of the whole product. Considering the large economic importance of the dry matter content on agricultural products it is of particular advantage that water belongs to those constituents which are most easily assessed in the near infrared. While other constituents of economic importance such as starch, oil and protein in grains and seeds have a much lesser effect on NIR signals, their contents can nonetheless be assessed with high analytical precision on freshly harvested grains and seeds. In the last years several applications for on line quality assessment on harvesting machines were developed and tested. The talk will give an overview and outlook on existing and future possibilities of this new field of NIR applications.

  • PDF

New Cooling Techniques of High Tc Superconductor Systems (고온초전도 시스템의 새로운 냉각기술)

  • Chang, Ho-Myung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.7-11
    • /
    • 1999
  • The recent progress in new cooling techniques of the high Tc superconductor(HTS) systems is reported and discussed with some practical examples. At the beginning stage of the HTS development in research laboratories, liquid nitrogen(LN$_2$) is the standard medium for an effective cooling. The success of HTS in many different application areas, however, has required a variety of need in the cooling temperature and the cooling capacity with specific design restrictions. While the utilization of alternative liquid cryogens such as liquid neon (LNe) or liquid hydrogen (LH$_2$) has been tired in some of them, even solid cryogens such as solid nitrogen (SN$_2$) or solid hydrogen (SH$_2$) may be another option in special applications. The gaseous helium cooled by a cryogenic refrigerator has also been a good candidate in many cases. One of the best cooling methods for the HTS is the direct conduction-cooling by a closed-cycle refrigerator with no cryogen at all. The refrigeration may be based on Joul-Thomson, Brayton, Stirling, Gifford-McMahon, or pulse tube cycles. The pros and cons of the newly proposed cooling methods are described and some significant design issues are presented.

  • PDF

NEW SPECTROSCOPIC METHODS FOR THE SIMULTANEOUS ESTIMATION OF FUNDAMENTAL ATMOSPHERIC PARAMETERS USING THE LINE DEPTH RATIOUS

  • Kim, Chul-Hee;Moon, B.K.;Lee, I.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.25-29
    • /
    • 2012
  • New methods are developed to estimate the effective temperature (Te), surface gravity (log g), and metallicity ([A/H]) simultaneously with the spectral line depth ratios. Using the model atmosphere grids, depth values are calculated for the wavelength range of $4000{\AA}-5600{\AA}$ for various temperatures, gravities, and metallicities. All possible different combinations of line depth ratios for different pairs of ratios are investigated. A graphical 3D figure is produced with X, Y, and Z axes corresponding to Te, log g, and [A/H], respectively. By reading a cross point of two curves plotted by a connection of three parameters obtained from spectral line depth ratio pairs on each of the three projected planes, Te, log g, and [A/H] are determined simultaneously. In addition, an analytical method is devised based on the similar algorithm developed for the graphical method. Our methods were applied to estimate the fundamental atmospheric parameters of the Sun and Arcturus.

Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model

  • Nie, Junfeng;Liu, Yunpeng;Xie, Qihao;Liu, Zhanli
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.501-509
    • /
    • 2019
  • In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

Analysis on Fluid Dynamics in the Cooling Tube for Manufacture of Liquid Hydrogen (액체수소 제조를 위한 냉각튜브 내 유동장 해석)

  • LEE, DAE-WON;NGUYEN, HOANG HAI;NASONOVA, ANNA;OH, IN-HWAN;KIM, KYO-SEON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • We present a study of hydrogen liquefaction using the CFD (Computational Fluid Dynamics) program. Liquid hydrogen has been evaluated as the best storage method because of high energy per unit mass than gas hydrogen, but efficient hydrogen liquefaction and storage are needed in order to apply actual industrial. In this study, we use the CFD program that apply navier-stokes equation. A hydrogen is cooled by heat transfer with the while passing gas hydrogen through Cu tube. We change diameter and flow rate and observe a change of the temperature and flow rate of gas hydrogen passing through Cu tube. As a result of, less flow rate and larger diameter are confirmed that liquefaction is more well. Ultimately, When we simulate the hydrogen liquefaction by using CFD program, and find optimum results, it is expected to contribute to the more effective and economical aspects such as time and cost.

An Experimental Study on Expansion of Operation Range by Lean Boosting for a HCCI H2 Engine (희박과급에 의한 수소 예혼합 압축착화 기관의 운전영역 확장에 관한 실험적 연구)

  • Ahn, Byunghoh;Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.573-579
    • /
    • 2013
  • Hydrogen engine with homogeneous charged compression ignition can achieve high efficiency by high compression ratio and rapid chemical reaction rates spatially. However, it needs to expansion of the operation range with over-all load conditions which is very narrow due to extremely high pressure rise rate. The adoption of the lean boosting in a HCCI $H_2$ engine is expected to be effective in expansion of operation range since minimum compression ratio for spontaneous ignition is decreased by low temperature combustion and increased surround in-cylinder pressure. In order to grasp its possibility by using lean boosting in the HCCI $H_2$ engine, compression ratio required for spontaneous ignition, expansion degree of the operation range and over-all engine performance are experimentally analyzed with the boosting pressure and supply energy. As the results, it is found that minimum compression ratio for spontaneous ignition is down to the compression ratio(${\varepsilon}$=19) of conventional diesel engine due to decreased self-ignition temperature, and operation range is extended to 170% in term of the equivalence ratio and 12 times in term of the supply energy than that of naturally aspirated type. Though indicated thermal efficiency is decreased by reduced compression ratio, it is over at least 46%.

FOLLOW-UP PHOTOMETRY OF TWO NEW ECLIPSING PCEBs FROM THE SLOAN DIGITAL SKY SURVEY

  • WANGNOK, KITTIPONG;SANGUANSAK, NUANWAN;IRAWATI, PUJI;DHILLON, VIK;MARSH, TOM R.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.217-218
    • /
    • 2015
  • In this work, we present the result of our follow-up observations of SDSS J092741.73+332959.1 and SDSS J130733.49+215636.7 using the 2.35 m Thai National Telescope and ULTRASPEC instrument. Both systems are listed among the recently found white dwarf main sequence binaries from the Sloan Digital Sky Survey. SDSS J092741.73+332959.1 is a new PCEB with a period of 2.3 days, the longest orbital period known to date for white dwarf binaries. SDSS J130733.49+215636.7 is confirmed to be an eclipsing system with a period of 0.21 days from the Catalina Survey's light curve, however the parameters for the white dwarf are still uncertain. Our goal is to determine precise parameters for both systems using the Binary Maker 3 software. The observation for SDSS J0927+3329 was done on 9 January 2014 in the SDSS r' filter while the data for SDSS J1307+2156 were taken in the z' filter on 27 April 2014. Our models show that the red dwarf companions in both systems are well constrained inside their Roche Lobes. We find that the binary M2/M1 ratio in SDSS J0927+3329 is close to 0.5, with white dwarf and M-dwarf temperatures of 12000 K and 3300 K, respectively. Our preliminary result for SDSS J1307+2156 show that this system has an extreme mass ratio of 0.3. The white dwarf in this system has a temperature of 7500 K and the companion star has an effective temperature of 3150 K.