• Title/Summary/Keyword: new advanced high-strength steels

Search Result 14, Processing Time 0.028 seconds

Developments and applications of high strength cold rolled steel sheets for automobiles (자동차용 고강도 냉연강판의 개발 및 적용현황)

  • Kim S. J.;Chin K. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.45-52
    • /
    • 2004
  • Continuing pressure for the weight reduction of vehicles and improvement of collision safety is driving the development of new high strength steel with excellent formability. The formable high strength steels which have excellent drawability have been developed and applied to the complicated inner panels. Although BH steel have mainly occupied the material market for outer panels, it is challenged by DP steel which have low yield strength and good bake hardenability. The advanced high strength steel, TRIP steels and DP steels which have excellent formability are new alternatives to conventional HSLA steel for structural parts such as members and pillars. HSLA steels also have been used for automotive bumper reinforcements due to their high yield ratio. Higher grade complex phase steel(CP) were developed for bumper reinforcements by addition of precipitation hardening to transformation strengthened steel. The usage of the advanced high strength steel ale increasing and will become the main material in structural parts near future. This paper describes the features of newly developed high strength cold rolled steels for automobiles.

  • PDF

Mechanical Properties of High Stength Sheet Steels for Auto-Body by Induction Heat Treatment (고주파열처리에 의한 자동차용 고강도 강판의 기계적 성질변화)

  • Lee, D.H.;Yoon, C.S.;Lim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.73-77
    • /
    • 2004
  • The efforts which increase the strength of the auto-body structure and decrease its weight lead to develop a new concept of part production systems, such as Post-Form Strengthening by induction heat treatment. In this study, several cold and hot-rolled sheet steels were used to find out optimum induction heat treatment conditions. After induction heat treatment, strength of heat-treated sheet steels was increased significantly compared with that of as-rolled steels. From these results, auto-body structure which has more light and safe has been made by using this induction hardening method.

Performance Examination and Comparison of Steel Beam-Column Connection in SM570TMC for Mixed-Use (고강도강 혼용 사용을 위한 SM570TMC강 보-기둥 접합부의 성능평가 및 해석 비교)

  • Kim, Moonjeong;Cho, Sukhee;Ha, Tae-Uk;Kang, Chang-Hoon;Choi, Woo-Hyuk;Kim, Jung-Hak
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.22-29
    • /
    • 2013
  • In recent years, the construction of high-rise buildings are promoted. According to these, there are many needs about new technologies to strengthen the building performance and high-strength steel is regarded as one of these for promoting building performance. In Korea, high-strength steels which stress are over 600MPa are on market and in aborad, super high-strength steels over 1000MPa are developing and they expected to promote the building performance. But there are still doubts about applying high-strength steel members because of size effect and worry of brittle fracture. In this reports, we propose results of performance and analysis tests for use with general steel. We propose the characteristic of high-strength steels first and next the results of performance test to show they satisfy the performance that designers expect. And last, we compare the results of test and analysis for acquire the alanysis reliability in non-linear analysis with high-strength steels.

Development of High Performance Stainless Steel Powders

  • Schade, Christopher;Schaberl, John;Narasimhan, Kalathur S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.169-170
    • /
    • 2006
  • Advanced melting technology is now being employed in the manufacture of stainless steel powders. The new process currently includes electric arc furnace (EAF) technology in concert with Argon Oxygen Decarburization (AOD), High Performance Atomizing (HPA) and hydrogen annealing. The new high performance-processing route has allowed the more consistent production of existing products, and has allowed enhanced properties, such as improved green strength and green density. This paper will review these processing changes along with the potential new products that are being developed utilizing this technology. These include high strength stainless steels such as duplex and dual phase as well as stainless steel powders used in high temperature applications such as diesel filters and fuel cells.

  • PDF

Microstructure and Properties of HIPped P/M High Speed Steels (열간등압소결 된 고속도 공구강의 미세조직 및 기계적 특성)

  • Gang Li;Park, Woojin;S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.35-35
    • /
    • 1997
  • High$\cdot$speed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.

  • PDF

Recent Trends of Coated Sheet Steels for Automotive use

  • Moon, Man-Been
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-42
    • /
    • 2012
  • Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide $CO_2$ regulation, passenger safety through enhanced crashworthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented.

A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application (자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구)

  • Choi, Ildong;Park, Jiyoun;Kim, Jae-Won;Kang, Mun-Jin;Kim, Dong-Cheol;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

Design of Helical SPR for Joining Advanced High Strength Steel and Aluminum Alloy Sheets (초고장력강과 알루미늄 합금의 판재 접합을 위한 헬리컬 SPR 설계)

  • Kim, Dongbum;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.55-59
    • /
    • 2015
  • Self-piercing riveting (SPR) is a sheet-joining method that can be used for materials that are difficult or unsuitable for weld, such as aluminum alloys and other steel sheet metals. The increased application of lightweight materials has initiated many investigations into new SPR conditions for riveting dissimilar materials. However, buckling of the semi-tubular rivet occurs during the riveting of AHSS. In this study, a helical SPR was designed for the riveting of AHSS and Al-alloy. In addition, the reinforced helical SPR which has straight parts was designed. The riveting of AHSS and Al-alloy was simulated. Simulated results were verified by comparison with experimental ones.

Description of reversed yielding in thin hollow discs subject to external pressure

  • Alexandrov, Sergei E.;Pirumov, Alexander R.;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.661-676
    • /
    • 2016
  • This paper presents an elastic/plastic model that neglects strain hardening during loading, but accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior of this kind of materials have been restricted to a class of boundary value problems in which the state of stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to be used to describe reversed yielding. The new model generalizes this approach on plane stress problems assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to describe reversed yielding in thin hollow discs subject to external pressure.

The Durability of Ships Considering Fatigue Cracking

  • Liu, Donald;Thayamballi, Anil
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.57-72
    • /
    • 1997
  • The larger trends related to cracking in ocean going vessels (primarily tankers and bulk carriers) are reviewed on the basis of available data. The typical interrelated causes of such cracking are: high local stresses, extensive use of higher strength steels, inadequate treatment of dynamic loads, adverse operational factors (harsh weather, improper vessel handling), and controllable structural degradation (corrosion, wear, stevedore damage). Three consequences of cracking are then discussed: structural failure, pollution, and increased maintenance. The first two, while rare, are potentially of high consequence including loss of life. The types of solutions that can be employed to improve the durability of ships in the face of fatigue cracking are then presented. For existing vessels, these solutions range from repairs based on structural analysis or service experience, control of corrosion, and enhanced surveys. For new vessels, the use of advanced design procedures that specifically address dynamic loads and fatigue cracking is necessary. As the preferred solution to the problem of cracking in ships, this paper advocates prevention by explicit design by first principles.

  • PDF