• 제목/요약/키워드: neutron star

검색결과 51건 처리시간 0.021초

A NEW CLASS OF NEUTRON STAR BINARIES AND ITS IMPLICATIONS

  • LEE, CHANG-HWAN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.573-576
    • /
    • 2015
  • Recent discovery of $2M_{\odot}$ neutron stars in white dwarf-neutron star binaries, PSR J1614-2230 and PSR J0348+0432, has given strong constraints on the maximum mass of neutron stars. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than $1.5M_{\odot}$. These observations suggest that the neutron star masses in binaries may depend on the evolution process of neutron star binaries. In addition, recent works on LMXB (low-mass X-ray binaries) provides us the possibility of estimating the masses and radii of accreting neutron stars in LMXBs. In this talk, we discuss the implications of recent neutron star observations to the neutron star equation of states and the related astrophysical problems. For the evolution of neutron star binaries, we also discuss the possibilities of super-Eddington accretion onto the primary neutron stars.

CLOSE ENCOUNTERS BETWEEN A NEUTRON STAR AND A MAIN-SEQUENCE STAR

  • LEE HYUNG MOK;KIM SUNG S.;KANG HYESUNG
    • 천문학회지
    • /
    • 제29권1호
    • /
    • pp.19-30
    • /
    • 1996
  • We have examined consequences of strong tidal encounters between a neutron star and a normal star using SPH as a possible formation mechanism of isolated recycled pulsars in globular clusters. We have made a number of SPH simulations for close encounters between a main-sequence star of mass ranging from 0.2 to 0.7 $M_\bigodot$ represented by an n=3/2 poly trope and a neutron star represented by a point mass. The outcomes of the first encounters are found to be dependent only on the dimensionless parameter $\eta'{\equiv}(m/(m+ M))^{1/2}(\gamma_{min}/R_{MS})^{3/2}(m/M)^{{1/6)}$, where m and M are the mass of the main-sequence star and the neutron star, respectively, $\gamma_{min}$ the minimum separation between two stars, and $R_{MS}$ the size of the main-sequence star. The material from the (at least partially) disrupted star forms a disk around the neutron star. If all material in the disk is to be acctreted onto the neutron star's surface, the mass of the disk is enough to spin up the neutron star to spin period of 1 ms.

  • PDF

제 5힘과 중성자성의 구조 (ON THE FIFTH FORCE AND THE STRUCTURE OF NEUTRON STAR)

  • 송두종;이해심
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.115-130
    • /
    • 1994
  • 구성물질에 영향을 받는 제5힘이 존재할 경우 별의 특성과 구조를 중성자성을 대상으로 살펴보았다. 중성자만으로 이루어진 축퇴된 중성자성의 크기, 질량및 구조는 변형된 토마스-페르미 방정식의 해로서 계산할 수 있고, 제5힘이 없을 경우와 같이 새로운 중성자성의 크기, 질량 및 구조가 제5힘의 상수와 중력상수 $\alpha$에 영향을 받고 있음을 알았다. 극히 상대론적인 경우 새로운 중성자성의 특성 질량인 챤드라세카르 질량, $M_{ch}\simeq(1-\alpha)^{-3/2}{m_{pl}}^3/m^2$ 은 물리법칙의 상수만으로 결정되는 것을 확인할 수 있었다. 그러나 실험 결과의 한계안에서 새로운 중성자성의 크기와 질랴의 변화량은 각각 $\alpha$/2 와 3$\alpha$/2 정도였다.

  • PDF

중성자 발생용 구형 집속빔 핵융합 장치의 방전현상 연구 (A Study on Discharge Phenomenon of Spherically Convergent Beam Fusion Device for Neutron Generation)

  • 박정호;주흥진;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.467-470
    • /
    • 2007
  • Application field of neutron beam is very broad including industry, medicine and science. But the research and development and use of neutron beam is restricted within in narrow limits in this country, because neutron beam facility is insufficient - a big research facility of nuclear reactor(HANARO) and some small industrial facilities which use radioisotope neutron source are available. This paper compare and investigate the results of experiment and numerical analysis of the discharge in the spherically convergent beam fusion device which were expected as a portable neutron source. The spherically convergent beam fusion device will offer stability in neutron production, possibility of movement for convenience, low construction cost and higher neutron flux than radioisotope neutron source. The star mode discharge which efficiently generate neutron, were observed at both results.

BLUE STRAGGLERS, CATACLYSMIC VARIABLES, X-RAY BINARIES, AND MILLISECOND PULSARS IN GLOBULAR CLUSTERS

  • Lee, Hyung-Mok
    • 천문학회지
    • /
    • 제25권1호
    • /
    • pp.47-64
    • /
    • 1992
  • Cores of globular clusters are an ideal place for close encounters between stars. The outcome of tidal capture can be stellar mergers, close binaries between normal stars (W UMa type), cataclysmic variables composed of white dwarf and normal star pairs, or low-mass X-ray binaries consisting of a neutron star and a normal star pairs. Stellar mergers can be the origin of blue stragglers in dense globular clusters although they are hard to observe. Low mass X-ray binaries would eventually become binary pulsars with short pulse periods after the neutron stars accrete sufficient amount of matter from the companion. However, large number of recently discovered, isolated millisecond pulsars (as opposed to binary pulsars) in globular clusters may imply that they do not have to gain angular speeds during the X-ray binary phase. We propose that these isolated millisecond pulsars may have formed through the disruptive encounters, which lead to the formation of accretion disk without Roche lobe filling companion, between a neutron star and a main-sequence star. Based on recently developed multicomponent models for the dynamical evolution of globular clusters, we compute the expected numbers of various systems formed by tidal capture as a function of time.

  • PDF

SCBF 장치에서 그리드 음극 구조의 영향에 대한 입자 시뮬레이션 (Particle Simulation on the Effect of Grid Cathode Geometry in SCBF Device)

  • 주흥진;박정호;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.742-747
    • /
    • 2007
  • In 2-dimensional SCBF (Spherically Convergent Beam Fusion) device, the effect on neutron production rate of the grid cathode geometry was simulated. The motion of Particles was tracked using Monte Carlo Method including the atomic and molecular collision processes and potential distribution was calculated by Finite Element Method, Main processes of the discharge were the ionization of $D_2$ by fast $D_2^+\;ion$. As the number of cathode rings was small and the size of grid cathode decreased, the ion current increased and neutron production rate will also increase. The star mode discharge which is a very important characteristic in SCBF device, was confirmed by the ionization position.

THE ELECTRON FRACTION AND THE FERMI ENERGY OF RELATIVISTIC ELECTRONS IN A NEUTRON STAR

  • GAO, ZHI FU;LI, X.D.;WANG, N.;PENG, Q.H.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.569-572
    • /
    • 2015
  • We first deduce a uniform formula forthe Fermi energy of degenerate and relativistic electrons in the weak-magnetic field approximation. Then we obtain an expression of the special solution for the electron Fermi energy through this formula, and express the electron Fermi energy as a function of electron fraction and matter density. Our method is universally suitable for relativistic electron- matter regions in neutron stars in the weak-magnetic field approximation.

Estimating Mass and Radius of a Neutron Star in Low-Mass X-ray Binary

  • 곽규진;성광현;김영민;김명국;이창환
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.48.1-48.1
    • /
    • 2019
  • Mass and radius of a neutron star in low-mass X-ray binary (LMXB) can be estimated simultaneously when the observed light curve and spectrum show the photospheric radius expansion feature. This method has been applied to 4U 1746-37 and the mass and radius were found to be unusually small in comparison with typical neutron stars. We re-estimate the mass and radius of this target by considering that the observed light curve and spectrum can be affected by other X-ray sources because this LMXB belongs to a very crowded globular cluster NGC 6441. The new estimation increases the mass and radius but they do not reach the typical values yet.

  • PDF

Populations Accessible to Gravitational Wave and Multi-Messenger Astronomy Within 10 Years

  • Kim, Chunglee
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.58.1-58.1
    • /
    • 2019
  • Gravitational-wave (GW) sources for the next decades would be in majority binaries consisting of neutron stars and/or black holes reside in the extragalactic environment. For example, GW170817 was the first extragalactic neutron star - neutron star binary found by GW observations and it was proved the power of multi-messenger astronomy (MMA) including the KMTNet observations. With the ever increased sensitivity, the $3^{rd}$ observation run (O3) led by the advanced LIGO and advanced Virgo this year aims to search for more 'standard' populations as well as 'exotic' ones expected by stellar evolution. I will present highlights of on-going efforts by researchers in Korea and those in abroad for estimating physical parameters of a source. Mass, spin, distance, and location are prerequisite information to constrain theoretical understanding of the source formation and evolution. Furthermore, these information are to be shared with the international community for follow-up multi-messenger observations. I will present the observational accuracy expected for the future GW observations and discuss their implications. If time allows, I will make a few remarks on prospects of O3 with KAGRA collaborations, which many domestic researchers are closely involved in.

  • PDF