• Title/Summary/Keyword: neutron irradiation

Search Result 301, Processing Time 0.024 seconds

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

Operation of dry distillation process on the production of radionuclide 131I at Puspiptek area Serpong Indonesia, 2021 to 2022

  • Chaidir Pratama;Daya Agung Sarwono;Ahid Nurmanjaya;Abidin Abidin;Triyatna Fani;Moch Subechi;Endang Sarmini;Enny Lestari;Yanto Yanto;Kukuh Eka Prasetya;Maskur Maskur;Fernanto Rindiyantono;Indra Saptiama;Anung Pujiyanto;Herlan Setiawan;Tita Puspitasari;Marlina Marlina;Hasnel Sofyan;Budi Setiawan;Miftakul Munir;Heny Suseno
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1526-1531
    • /
    • 2024
  • 131I is a fission product produced in a nuclear reactor by irradiating tellurium dioxide, with a half-life of 8.02 day. The most important and widely used method for making 131I is irradiation using a nuclear reactor and post-irradiation followed by dry distillation. The advantage of the dry distillation process is that the process and the equipment are relatively simple, namely TeO2 (m.p. 750 ℃), which can withstand heating during reactor irradiation. Based on TeO2 irradiation by neutron following the technique of dry distillation was explained for production of 131I on a large scale. A dry distillation followed the radioisotope production operation using the 30 MW GA Siwabessy nuclear reactor to meet national demand. TeO2 targets are 25 and 50 g irradiated for 87-100 h. The resulting 131I activity is 20.29339-368.50335GBq. According to the requirements imposed on the radionuclide purity of the preparation, the contribution of 131I training in the resulting preparation was not less than 99.9 %

On Some Formulae for the Radioisotope Formation (I) - When a Reactor is Operated Regularly at a Certain Time Intervals-

  • Lee, Chang-Kun;Kim, Taeyoung;Yim, Yung-Chang
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.148-154
    • /
    • 1971
  • Some formulae have been derived for the handy calculation of the formation of radioisotope when a reactor is operated regularly on a usual on-off pattern. In particular, the case of isotope production with the present operation condition of tile Korean reactor, which is in operation for 8.2 hours from Monday to Thursday and is not operated on friday and Sunday but is back in operation on Saturday only for 3.2 hours, is discussed herein with special emphasis. Should there be no secondary nuclear reaction resulting in the transformation of produced nuclide, the formula for the calculation of its activity could be derived as follows: (equation omitted) where A: activity (dps), $\Phi$: neutron flux (n cm$^{-2}$ sec$^{-1}$ ), No : number of atoms before the irradiation, $\sigma$ : activation cross section ($\textrm{cm}^2$), λ : disintegration constant of the radioactiveisotope formed (hr$^{-1}$ ), t : elapsed time of target in the reactor (hr), n : number of elasped days of target in the reactor, m : number of days from the first day of sample irradiation to Friday, s, r, q: number of weekday of Friday, Saturday and Sunday, respectively. Since the above formula consists of many invariables on the whole, the activity of each radioisotope to be produced can he easily and conveniently made available from the chart in advance which is made of the invariable terms calculated.

  • PDF

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.

Simulation of Neutron irradiation Corrosion of Zr-4 Alloy Inside Water Pressure reactors by Ion Bombardment

  • Bai, X.D.;Wang, S.G.;Xu, J.;Chen, H.M.;Fan, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.96-109
    • /
    • 1997
  • In order to simulate the corrosion behavior of Zr-4 alloy in pressurized water reactors it was implanted (or bombarded) with 190ke V $Zr^+\; and \;Ar^+$ ions at liquid nitrogen temperature and room temperature respectively up to a dose of $5times10^{15} \sim 8\times10^{16} \textrm{ions/cm}^2$ The oxidation behavior and electrochemical vehavior were studied on implanted and unimplanted samples. The oxidation kinetics of the experimental samples were measured in pure oxygen at 923K and 133.3Pa. The corrosion parameters were measured by anodic polarization methods using a princeton Applied Research Model 350 corrosion measurement system. Auger Electron Spectroscopy (AES) and X-ray Photoelectric Spectroscopy (XPS) were employed to investigate the distribution and the ion valence of oxygen and zirconium ions inside the oxide films before and after implantation. it was found tat: 1) the $Zr^+$ ion implantation (or bombardment) enhanced the oxidation of Zircaloy-4 and resulted in that the oxidation weight gain of the samples at a dose of $8times10^{16}\textrm{ions/cm}^2$ was 4 times greater than that of the unimplantation ones;2) the valence of zirconium ion in the oxide films was classified as $Zr^0,Zr^+,Zr^{2+},Zr^{3+}\; and \;Zr^{4+}$ and the higher vlence of zirconium ion increased after the bombardment ; 3) the anodic passivation current density is about 2 ~ 3 times that of the unimplanted samples; 4) the implantation damage function of the effect of ion implantation on corrosion resistance of Zr-4 alloy was established.

  • PDF

The Iodine Content in Common Korean Foods (한국인의 상용식품내 요오드 함량)

  • 문수재
    • Journal of Nutrition and Health
    • /
    • v.31 no.2
    • /
    • pp.206-212
    • /
    • 1998
  • This study was undertaken to analyze the iodine content in commonly donsumed Korean foods. Food samples were purchased from 3 randomly selected markets. The iodine contents in foods were determined by nuetron activation analysis (NAA). All irradiation of food samples were done at a pnueumatic transfer system (thermal nuetron flux : 1 $\times$1013n/$\textrm{cm}^2$.s) of the TRIGA MarkIII research reactor in the Korea Atomic Energy Research Institute . The results indicated that the iodine content was high in seaweeds, fishes, and iodine-enriched eggs in that order and very low in grain, beans , fruits and vegetables. Edible seaweeds contained iodine levels of between 13,700 and 1,790, 600$\mu\textrm{g}$/kg. Levels of iodine in fishes and shellfishes were between 478 and 2, 840$\mu\textrm{g}$/kg. Ordinary eggs contained 314$\mu\textrm{g}$/kg iodine, but iodine -enriched eggs contained 1,869$\mu\textrm{g}$/kg. The average concentration of iodine in milk was 207$\mu\textrm{g}$/kg. There was seasonal variation in the iodine content of milk , levels were highest in winter milk(230$\mu\textrm{g}$/kg) and lowest in summer milk(180$\mu\textrm{g}$/kg).The idodine contents of most vegetables and fruits were below 10$\mu\textrm{g}$/kg. The iodine contents of most vegetables and fruits were below 10$\mu\textrm{g}$/kg. From high to low , the sequence of foods with high iodine content in one serving was as follows ; sea tangle , sea mustard, iodine-enriched eggs, fish , laver and milk. This study may provide basic data on the iodine content of foods consumed by Korean which have not yet been analyzed .

  • PDF

The Construction Work Completion of the Fuel Test Loop (핵연료 노내조사시험설비 설치공사 완료)

  • Park, Kook-Nam;Lee, Chung-Young;Chi, Dae-Young;Park, Su-Ki;Shim, Bong-Sik;Ahn, Sung-Ho;Kim, Hark-Rho;Lee, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.291-295
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering & Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

A Comparative Study on the Determination of the Selenium in Biological Samples using 75Se and 77mSe Nuclides (75Se과 77mSe 핵종을 이용한 생물시료 중의 셀렌 분석에 대한 비교 연구)

  • Moon, Jong-Hwa;Kang, Sang-Hoon;Kim, Sun-Ha;Chung, Yong-Sam;Kim, Young-Jin
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.23-26
    • /
    • 2005
  • Se is well known as an anti-oxidant trace element and many customers are interested in an analysis and contents of Se in the various foodstuff samples. This study was aimed at establishig and comparing an analytical method for the determination of the Se in biological samples by neutron activation analysis using two nuclides, $^{75}Se$ and $^{77m}Se$. Keeping this objective, three NIST biological standard reference materials were chosen and the concentrations of the Se were determined under the prefixed analytical conditions such as the irradiation, decay and measurement time. The measured values by both analytical methods were evaluated with certified values. In addition, the detection limits and measurement uncertainty for the analytical results using $^{75}Se$ and $^{77m}Se$ were compared with each other.

Studies on Preparation of Dysprosium-165 Metallic Macroaggregates for the Treatment of Rheumatoid Arthritis (류마티스 관절염 치료용 디스프로슘-165금속 응집입자($^{165}Dy-MA$)의 제조에 관한 연구)

  • Park, Kyung-Bae;Kim, Jae-Rok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.2
    • /
    • pp.227-233
    • /
    • 1994
  • Irradiation of 20mg of natural $Dy(NO_3)_3$ in a neutron flux of $2{\times}10^{13}n/cm^2$ sec for 4 hours gave 5.76 Ci of $^{165}Dy$(specific activity, 610mCi/mg Dy) with high radionuclidic purity (>99.9 %). $^{165}Dy-MA$ was prepared in a quantitative yield by reacting the aqueous solution of $^{165}Dy(NO_3)_3$ with sodium borohydride solution in 0.2N NaOH. Coulter particle analyzer exhibited mean particle size of $2.6{\mu}m$ (range $1{\sim}6{\mu}m$), Even though the $^{165}Dy-MA$ suspension in saline was stored at $37^{\circ}C$ for 24 hours or autoclaved at $121^{\circ}C$ for 30minutes, there was no significant change in particle size and leakage problem indicating the prepared $^{165}Dy-MA$ is sufficiently stable. In-vivo retention studies were carried out by administering $^{165}Dy-MA$ into the knee joint space of normal rabbits. Gamma camera analysis showed high retention in joint space of normal rabbits. Gamma camera analysis showed high retention in joint space even at 24 hours after administration (> 99.9%). The ease with which the $^{165}Dy-MA$ can be made in the narrow size range and their high invitro and vivo stability make them attractive agents for radiation synovectomy.

  • PDF