• Title/Summary/Keyword: neutron irradiation

Search Result 301, Processing Time 0.029 seconds

Effect of Neutron Irradiation on Robinia pseudoacacia Seeds (속중성자조사(速中性子照射)가 Robinia pseudoacacia 종자에 미치는 영향(影響))

  • Yim, Kyong Bin
    • Journal of Korean Society of Forest Science
    • /
    • v.2 no.1
    • /
    • pp.52-53
    • /
    • 1962
  • 기건상태(氣乾狀態)에 있는 수원지방산(水原地方産)의 Robinia pseudoacacia의 종자(種子)가 속중성자조사처리(速中性子照射處理)를 받았을 때 약 2000 Rads의 조사량(照射量)으로서는 파종후 약 2주일(週日)이 된 때의 발아율(發芽率)에 큰 영향(影響)을 주지 않았으나 4200 Rads로서는 발아율(發芽率)의 현저한 저하(低下)가 보였다. 발아율(發芽率)에 입각(立脚)한 $LD_{50}$은 근계(根系)또는 유경장(幼莖長)에 입각(立脚)한 $LD_{50}$ 보다 높았다. X-ray photography로 종자형질(種子形質)이 사전(事前)에 조사(調査)되었었다.

  • PDF

THE OPAL (OPEN POOL AUSTRALIAN LIGHT-WATER) REACTOR IN AUSTRALIA

  • Kim Sung-Joong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.443-448
    • /
    • 2006
  • The OPAL (Open Pool Australian Light-water) reactor is currently being constructed to replace HIFAR (HI-Flux Australian Reactor, commissioned in 1958) in mid-2006. HIFAR will be shutdown for decommissioning after several months of simultaneous operation with OPAL for smooth transition of operating systems and business. OPAL is a 20 MW multipurpose research reactor for radioisotope production, irradiation services and neutron beam research. The OPAL reactor uses low enriched uranium fuel in a compact core, cooled by light water and moderated by heavy water, yielding maximum thermal flux not less than $4{\times}10^{14}ncm^{-2}s^{-1}$. The reactor containment building is constructed of reinforced concrete and has been designed to protect the reactor from all external events such as seismic occurrences and impact from a hypothetical light aircraft crash. This paper describes the main elements of the reactor design and its applications.

ANALYSIS OF RADIOACTIVE IMPURITIES IN ALUMINA AND SILICA USED FOR ELECTRONIC MATERIALS

  • Lee Kil-Yong;Yoon Yoon-Yeol;Cho Soo-Young;Kim Yong-Je;Chung Yong-Sam
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.423-426
    • /
    • 2006
  • A developed neutron activation analysis(NAA) and gamma-spectrometry were applied to improve the analytical sensitivity and precision of impurities in electronic-circuit raw materials. It is well known that soft errors in high precision electronic circuits can be induced by alpha particles emitted from naturally occurring radioactive impurities such as U and Th. As electronic circuits have recently become smaller in dimension and higher in density, these alpha-particle emitting radioactive impurities must be strictly controlled. Therefore, new NAA methods have been established using a HTS(Hydraulic Transfer System) irradiation facility and a background reduction method. For eliminating or stabilizing fluctuated background caused by Rn-222 and its progeny nuclides in air, a nitrogen purging system is used. Using the developed NAA and gamma-spectrometry, ultra trace amounts of U(0.1ng/g) and Th(0.01ng/g) in an alumina ball and high purity silica used for an epoxy molding compound (EMC) could be determined.

Electric Properties of YBCO Superconductor for Neutron Irradiation (중성자 조사를 위한 초전도 선재의 특성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.182-183
    • /
    • 2006
  • An electromagnetic memory effect observed in superconducting YBCO system was studied. From the measurement of differential conductance, it was cleared that the mechanism of electromagnetic memory can not be explained by using conventional flux flow model. By changing the density of external magnetic flux, changes m inductance of a coil in which a superconducting bar is inserted were also measured. It was concluded that the electromagnetic memory effect aries from the interaction between the trapped magnetic flux and the weak link of the filament formed in the superconducting bar.

  • PDF

Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time (결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

SYNTHESIS OF SILICA-COATED Au WITH Ag, Co, Cu, AND Ir BIMETALLIC RADIOISOTOPE NANOPARTICLE RADIOTRACERS

  • Jung, Jin-Hyuck;Jung, Sung-Hee;Kim, Sang-Ho;Choi, Seong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.971-976
    • /
    • 2012
  • Silica-coated Au with Ag, Co, Cu, and Ir bimetallic radioisotope nanoparticles were synthesized by neutron irradiation, after coating $SiO_2$ onto the bimetallic particles by the sol-gel St$\ddot{o}$ber process. Bimetallic nanoparticles were synthesized by irradiating aqueous bimetallic ions at room temperature. Their shell and core diameters were recorded by TEM to be 100 - 112 nm and 20 - 50 nm, respectively. The bimetallic radioisotope nanoparticles' gamma spectra showed that they each contained two gamma-emitting nuclides. The nanoparticles could be used as radiotracers in petrochemical and refinery processes that involve temperatures that would decompose conventional organic radioactive labels.

Evaluation of coolant density history effect in RBMK type fuel modelling

  • Tonkunas, Aurimas;Pabarcius, Raimоndas;Slavickas, Andrius
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2415-2421
    • /
    • 2020
  • The axial heterogeneous void distribution in a fuel channel is a relevant and important issue during nuclear reactor analysis for LWR, especially for boiling water channel-type reactors. Variation of the coolant density in fuel channel has an effect on the neutron spectrum that will in turn have an impact on the values of absolute reactivity, the void reactivity coefficient, and the fuel isotopic compositions during irradiation. This effect is referring to as the history effect in light water reactor calculations. As the void reactivity effect is positive in RBMK type reactors, the underestimation of water density heterogeneity in 3D reactor core numerical calculations could cause an uncertainty during assessment of safe operation of nuclear reactor. Thus, this issue is analysed with different cross-section libraries which were generated with WIMS8 code at different reference water densities. The libraries were applied in single fuel model of the nodal code of QUABOX-CUBBOX/HYCA. The thermohydraulic part of HYCA allowed to simulate axial water distribution along fuel assembly model and to estimate water density history effect for RBMK type fuel.

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

Room Temperature Annealing Process of Recoil Fragments in Neutron Irradiated Ammonium Chromate

  • Suh, In-Suck;Kim, Nak-Bae
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.322-326
    • /
    • 1972
  • The retention of $^{51}$ Cr was studied as chromate after dissolution of irradiated ammonium chromate with reactor exposure time and various storage time at room temperature. The annealing process of ammonium chromate depending on various storage time at room temperature follows first-order kinetics from zero time value to the pseudo-equilibrium value. The retention is increased with reactor irradiation time, also following first-order kinetics.

  • PDF