• Title/Summary/Keyword: neutralization process

Search Result 148, Processing Time 0.024 seconds

Simulation of the flue gas treatment processes of an industrial-waste incinerator using Aspen plus (Aspen plus를 이용한 산업폐기물 소각로의 배가스 처리 공정 모사)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3246-3252
    • /
    • 2009
  • The interest on the recovery of thermal energy using the waste has been rising to solve the problems of continuous increase of waste generation and the depletion of the fossil fuel recently. The incineration has been used most popularly as a treatment process of the waste for the energy recovery. However, it is expected that incineration and design cost will increase in the treatment of air contaminant emitted from incinerator. This research has simulated the actual incinerator and the flue gas treatment system using the Aspen plus which is the software to simulate the chemical process. The incineration process is composed of the 1st and 2nd combustor to burn the waste, SNCR process to reduce the $NO_x$ using the urea, and the steam generation process to save the energy during incineration. The $Ca(OH)_2$ slurry was used as an acid gas (HCl, $SO_2$) treatment materials and the removal efficiency for the products from the neutralization of acid gas in SDA and combustion ash was simulated at the bag filter. The simulation result has been corresponded with the treatment efficiency of emitted gas from the actual industrial waste incinerator and it is presumed to be used to forecast the efficiencies of flue gas treatment system in the future.

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Nitrate Removal and Recycling Technique (질산 제거 및 재이용 기술)

  • Lee, Kyoung Hee;Sim, Sang Jun;Choi, Guang Jin;Kim, Young Dae;Woo, Kyoung ja;Cho, Young Sang;Choi, Eui-So
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.87-93
    • /
    • 1997
  • A new process has been developed for nitrate and other salts removals from polluted waters. Alumina cement and calcium oxide served as precipitating agents to remove nitrate with stirring at basic pH. Low content of alumina in the commercialized alumina cements resulted in a increasing in nitrate removal yield. It is found that the compositions of aluminium and calcium are the most important factors in successful nitrate insolubilization. In order to remove high concentration of nitrate in polluted water, multi-stage precipitation was found to be very effective. Sulfate, chloride, and phosphate ions as well as nitrate were also removed by the precipitated reaction. After precipitation, post-treatments including Na2CO3 addition and neutralization with acid alleviated the level of aluminium and calcium in the treated water.

  • PDF

Effect of Acid and Salt on Weight toss of Polyester (PET) fabric by Sodium Hydroxide (산과 염이 폴리에스터 직물의 알칼리 감량에 미치는 영향)

  • Do, Sung-Guk;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.65-73
    • /
    • 1992
  • To control the hydrolysis rate of PET fabric with NaOH, HCl and $CH_3$COOH(HAc), as regulating reagent, were added to the 0.5 M NaOH solution. The concentrations of acids in 0.5 M NaOH were varied. PET fabrics were treated with aqueous solutions of acids in 0.5 M NaOH under different conditions. The weight loss of PET fabric, the rate of hydrolysis, the apparent activation energy (E$_{\alpha}$), the handle value, the etched surface of treated PET fabric, and the effect of salts such as NaCl, $CH_3$COONa(NaAc), and NH$_4$Cl on the weight loss were discussed. Acids in the aqueous 0.5 M NaOH solution decreased the weight loss of PET fabric bacause of neutralization of OH- and the weight loss of PET fabrics treated with corresponding concentration of aqueous NaOH solution to the concentrations of the aqueous solutions of acids in 0.5 M NaOH was lower than that of PET fabrics treated with aqueous solutions of acids in 0.5 M NaOH. The addition of NaCl to aqueous NaOH solution accelerated the reaction of OH- with PET greatly, the addition of NaAc increased the weight loss slightly, but the addition of NH$_4$Cl decreased the weight loss. It was thought that the very remarkable result that NaCl in aqueous NaOH solution promoted the hydrolysis of PET with NaOH would contribute to the conservation of energy and NaOH in the weight loss finishing process of PET fabric. The etched surface and the handle value of treated PET fabric were independent of the difference in the kinds of acids and salts added.nd salts added.

  • PDF

Effect of Lithium Bromide on Chitosan/Fibroin Blend (키토산/피브로인 블렌드에 있어서 브롬화 리튬의 효과)

  • Kim, Hong-Sung;Park, Sang-Min;Yoon, Sang-Jun;Hwang, Dae-Youn;Jung, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.509-513
    • /
    • 2009
  • For examining an effect of lithium bromide on structure and property of chitosan/fibroin blend, we investigated the structural characteristic of chitosan/fibroin blend films using solution with lithium bromide which was removed during a casting. The chitosan/fibroin blend formed a complex with the dissolved bromine/lithium ions. The crystalline phase of the complex was found in the blend film at LiBr concentration of 0.6 mol/L. The degree of crystallization was decreased with increasing the concentration of LiBr. The hydrated crystalline phase of chitosan was formed in the blend film that lithium bromide was removed in the process of casting by neutralization and osmotic action. The crystallinity of this film was increased largely as compared with that of the film without lithium bromide. The complexed blend film formed hydrogel absorbing plenty of water.

Kinetics of Cr(VI) Sorption/Reduction from Aqueous Solution on Activated Rice Husk

  • El-Shafey, E.I.;Youssef, A.M.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • A carbonaceous sorbent was prepared from rice husk via sulphuric acid treatment. After preparation and washing, the wet carbon with moisture content 85% was used in its wet status in this study due to its higher reactivity towards Cr(VI) than the dry carbon. The interaction of Cr(VI) and the carbon was studied and two processes were investigated in terms of kinetics and equilibrium namely Cr(VI) removal and chromium sorption. Cr(VI) removal and chromium sorption were studied at various initial pH (1.6-7), for initial Cr(VI) concentration (100 mg/l). At equilibrium, maximum Cr(VI) removal occurred at low initial pH (1.6-2) where, Cr(III) was the only available chromium species in solution. Cr(VI) removal, at such low pH, was related to the reduction to Cr(III). Maximum chromium sorption (60.5 mg/g) occurred at initial pH 2.8 and a rise in the final pH was recorded for all initial pH studied. For the kinetic experiments, approximate equilibrium was reached in 60-100 hr. Cr(VI) removal data, at initial pH 1.6-2.4, fit well pseudo first order model but did not fit pseudo second order model. At initial pH 2.6-7, Cr(VI) removal data did not fit, anymore, pseudo first order model, but fit well pseudo second order model instead. The change in the order of Cr(VI) removal process takes place in the pH range 2.4-2.6 under the experimental conditions. Other two models were tested for the kinetics of chromium sorption with the data fitting well pseudo second order model in the whole range of pH. An increase in cation exchange capacity, sorbent acidity and base neutralization capacity was recorded for the carbon sorbent after the interaction with acidified Cr(VI) indicating the oxidation processes on the carbon surface accompanying Cr(VI) reduction.

  • PDF

EA-Based Tuning of the PID Controller for a CSTR (CSTR용 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Many industrial processes such as continuous stirred tank reactors(CSTRs), desalination plant, distillation columns, pH neutralization processes and so on exhibit highly nonlinear characteristic and time-varying behavior during operation. The control of such processes has been challenging to control engineers. Hence, a variety of forms of PID controllers and their tuning rules for industrial processes have been developed to guarantee the best performance. In this paper, a scheme that designs the practical PID controller with an anti-windup strategy incorporating with an evolutionary algorithm(EA) is presented for the concentration control of a nonisothermal CSTR. EA is used to tune the parameters of the overall PID control process with anti-windup by minimizing the integral of absolute error(IAE). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of using the proposed method.

Synthesis of New Draw Solute Based on Polyethyleneimine for Forward Osmosis (정삼투를 위한 Polyethyleneimine 기반 유도용질 제조)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.286-295
    • /
    • 2018
  • A novel multi-valent salt based on polyethyleneimine having molecular weight of 800 (PEI 800) has been synthesized and characterized as forward osmosis draws solute. A reaction intermediate was synthesized by the neutralization reaction of polyethyleneimine and methyl acrylate, and was hydrolyzed with potassium hydroxide to synthesize a water soluble carboxylic acid (potassium salt) polyethyleneimine. NMR spectrometry, viscometry measurements and osmometry measurements was performed to characterize the draw solute. Forward osmosis experiments were done to know whether the solute could be used as a draw solute or not. The result shows comparable water flux and lower reverse salt flux compared with NaCl as a draw solute. We have also demonstrated recycling of the draw solute in the FO-NF integrated process.

Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy ($^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Kim, Byung-Ro;Park, Jong-Moon;Sung, Yong-Joo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.