• Title/Summary/Keyword: neutral point

Search Result 557, Processing Time 0.023 seconds

A Small Signal Modeling of Three-level Neutral-Point-Clamped Inverter and Neutral-Point Voltage Oscillation Reduction (3레벨 NPC인버터의 소신호 모델링과 중성점 전압 진동 저감)

  • Cho, Ja-Hwi;Ku, Nam-Joon;Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2014
  • This study proposes a control design for the grid output current and for reducing the neutral-point voltage oscillation through the small-signal modeling of the three-phase grid connected with a three-level neutral-point-clamped (NPC) inverter with LCL filter. The three-level NPC inverter presents an inherent problem: the neutral-point voltage fluctuation caused by the neutral-point current flowing in or out from the neutral point. The small signal modeling consists of averaging, dq0 transformation, perturbing, and linearizing steps performed on a three-phase grid connected to a three-level NPC inverter with LCL filter. The proposed method controls both the grid output and neutral-point currents at every switching period and reduces the neutral-point voltage oscillation. The validity of the proposed method is verified through simulation and experiment.

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.

Analysis of Average Neutral Point Current in 3-level NPC Converter under Generalized Unbalanced AC Input Condition

  • Jung, Kyungsub;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.151-152
    • /
    • 2016
  • This paper presents a neutral point deviation compensating control algorithm applied to a 3-level NPC converter under generalized unbalanced ac input conditions. The neutral point deviation is analyzed with a focus on the current flowing out of or into the neutral point of the dc-link in 3-level NPC converter. The model of neutral point deviation and neutral current are also constructed. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converter and its impact on neutral point deviation. This paper includes the harmonic characteristic of neutral point current under various imbalance AC operating conditions.

  • PDF

Analysis and Control of Neutral Point Current Deviation in Grid Tied 3-Level NPC Converter under Various Grid Unbalanced Conditions (다양한 불평형 계통 상황에서 계통 연계형 3-레벨 NPC 컨버터의 중성점 전류 변동에 대한 해석 및 제어)

  • Choi, Jaehoon;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.385-393
    • /
    • 2020
  • This study introduces an analysis and control method for the variation of neutral point current in a grid-tied three-level neutral point clamped (NPC) converter under various grid imbalance operating conditions. Various fault cases with unbalanced amplitude and phase are systematically categorized and described using a unified metric called the imbalance factor. The fundamental component of neutral point current is generated under grid imbalance cases. The pattern and behavior of this fundamental component of neutral point current highly depend on the imbalance factor regardless of the particular type of grid fault cases. The control scheme for regulating the negative sequential component of AC input current effectively reduces the size of the fundamental component of neutral point current under a wide range of grid imbalance cases. The control scheme will enable a grid-tied three-level NPC converter to operate reliably and stably under various types of grid faults.

A Study on the Neutral Point Voltage Control Limitation Area in Three-Level Inverter (3레벨 인버터의 중성점 전압 제어 제한 영역에 관한 연구)

  • Hwang, Han-Kyu;Park, Yongsoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.95-96
    • /
    • 2017
  • A three-level inverter is widely used thanks to its excellent performances, but the voltage may fluctuate at the neutral point of the split DC-Link. Neutral point voltage fluctuations cause inverter performance degradation and switching element damage, so the neutral point voltage control is essential. However, the neutral point control can be also limited by modulation index and power factor. This paper analyzes the limitation of the neutral point voltage control due to the limitation of zero-sequence voltage, and suggests a method to determine the region where the PWM has to be changed for a better neutral point control.

  • PDF

Compensation of Neutral Point Deviation under Generalized 3-Phase Imbalance in 3-level NPC

  • Jung, Kyungsub;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1866-1878
    • /
    • 2018
  • This paper presents a neutral point deviation and ripple compensation control method for application to 3-level NPC converters. The neutral point deviation and its harmonic components are analyzed with a focus on the average current flowing through the neutral point of the dc-link. This paper also proposes a control scheme to compensate for the neutral point deviation and dominant harmonic components under generalized unbalanced grid operating conditions. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converters. Simulation and experimental results are presented to verify the validity of the proposed method.

Neutral Point Balancing Algorithm for Multi-level Converter under Unbalanced Operating Conditions

  • Jung, Kyungsub;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • This paper presents a neutral point deviation compensating control algorithm applied to a 3-level NPC converter. The neutral point deviation is analyzed with a focus on the current flowing out of or into the neutral point of the dc link. Based on the zero sequence components of the reference voltages, this paper analyzes the neutral point deviation and balancing control for 3-level NPC converter. An analytical method is proposed to calculate the injected zero sequence voltage for NP balancing based on average neutral current. This paper also proposes a control scheme compensating for the neutral point deviation under generalized unbalanced grid operating conditions. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converter. Simulation and experimental results for a test set up of 30kW are shown to verify the validity of the proposed algorithm.

  • PDF

A New DPWM Method to Suppress the Low Frequency Oscillation of the Neutral-Point Voltage for NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1207-1216
    • /
    • 2015
  • In order to suppress the low frequency oscillation of the neutral-point voltage for three-level inverters, this paper proposes a new discontinuous pulse width modulation (DPWM) control method. The conventional sinusoidal pulse width modulation (SPWM) control has no effect on balancing the neutral-point voltage. Based on the basic control principle of DPWM, the relationship between the reference space voltage vector and the neutral-point current is analyzed. The proposed method suppresses the low frequency oscillation of the neutral-point voltage by keeping the switches of a certain phase no switching in one carrier cycle. So the operating time of the positive and negative small vectors is equal. Comparing with the conventional SPWM control method, the proposed DPWM control method suppresses the low frequency oscillation of the neutral-point voltage, decreases the output waveform harmonics, and increases both the output waveform quality and the system efficiency. An experiment has been realized by a neutral-point clamped (NPC) three-level inverter prototype based on STM32F407-CPLD. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed DPWM method.

Investigation of Low-Frequency Characteristics of Four-Switch Three-Phase Inverter

  • Yuan, Qingwei;Cheng, Chong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1471-1483
    • /
    • 2017
  • The low-frequency characteristics of four-switch three-phase (FSTP) inverter are investigated in this paper. Firstly, a general space vector pulse width modulation (SVPWM) directly involved the neutral point voltage of DC-link is proposed, where no sector identifications and trigonometric function calculations are needed. Subsequently, to suppress the DC offset in the neutral point voltage, the relationship between the neutral point voltage and the ${\beta}-axis$ component of the load current is derived, and then a new neutral point voltage control scheme is proposed where no low pass filter is adopted. Finally, the relationship between the load power factor and the maximum linear modulation index of the FSTP inverter is revealed. Since the operational region for the FSTP inverter in low frequency is reduced by the enlarged amplitude of the neutral point voltage, a linear modulation range enlargement scheme is proposed. A permanent magnet synchronous motor with preset rotary speed serves as the low-frequency load of the FSTP inverter. Experimental results verify that the new neutral point voltage control scheme is effective in the deviation suppression of the neutral point voltage, and the proposed scheme is able to provide a larger linear operational region in low frequency.

A Novel Modulation Method for Three-Level Inverter Neutral Point Potential Oscillation Elimination

  • Yao, Yuan;Kang, Longyun;Zhang, Zhi
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.445-455
    • /
    • 2018
  • A novel algorithm is proposed to regulate the neutral point potential in neutral point clamped three-level inverters. Oscillations of the neutral point potential and an unbalanced dc-link voltage cause distortions of the output voltage. Large capacitors, which make the application costly and bulky, are needed to eliminate oscillations. Thus, the algorithm proposed in this paper utilizes the finite-control-set model predictive control and the multistage medium vector to solve these issues. The proposed strategy consists of a two-step prediction and a cost function to evaluate the selected multistage medium vector. Unlike the virtual vector method, the multistage medium vector is a mixture of the virtual vector and the original vector. In addition, its amplitude is variable. The neutral point current generated by it can be used to adjust the neutral point potential. When compared with the virtual vector method, the multistage medium vector contributes to decreasing the regulation time when the modulation index is high. The vectors are rearranged to cope with the variable switching frequency of the model predictive control. Simulation and experimental results verify the validity of the proposed strategy.