• Title/Summary/Keyword: neutral evolution

Search Result 51, Processing Time 0.028 seconds

Estimation of Fuel Rate on the Galactic Disk from High Velocity Cloud (HVC) Infall

  • Sung, Kwang Hyun;Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2016
  • Continuous accretion of metal-poor gas can explain the discrepancy between the number of observed G-dwarfs and the number predicted by the "simple model" of galactic evolution. The maximum accretion rate estimated based upon approaching high velocity clouds (HVCs) can be up to ${\sim}0.4M_{\odot}{\cdot}yr^{-1}$ which is comparable with the accretion rate required by many chemical evolution models that is at least ${\sim}0.45M_{\odot}{\cdot}yr^{-1}$. However, it is not clear to what extent the exchange of gas between the disk and the cloud can occur when an HVC collides with the galactic disk. Therefore, we examined a series of HVC-Disk collision simulations using the FLASH 2.5 hydrodynamics simulation code. The outcomes of our simulations show that an HVC will more likely take away substances from the galactic disk rather than adding new material to the disk. We define this as an HVC having a "negative fuel rate". Further results in our study also indicate that the process and amount of fuel rate change can have various forms depending on the density, radius and velocity of an approaching HVC. The simulations in our study covers HVCs with a neutral hydrogen volume density from $1.0{\times}10^{-2}cm^{-3}$ to $41.0cm^{-3}$, radius of 200 pc to 1000 pc and velocity in the range between $40km{\cdot}s^{-1}$ and $100km{\cdot}s^{-1}$.

  • PDF

Parametric study of diamond/Ti thin film deposition in microwave plasma CVD (공정변수에 따른 microwave plasma CVD 다이아몬드/Ti 박막 증착 양상 조사)

  • Cho Hyun;Kim Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • Effects of CH₄/H₂ flow rate ratio, chuck bias and microwave power on the structural properties and particle densities of diamond thin films deposited on Ti substrates in microwave plasma CVD were examined. High quality diamond thin films were deposited on Ti substrates in 2∼3 CH₄ Vol.% conditions due to the preferential formation of sp³-bonus ana selective removal of sp²-bonus in the CH₄/H₂ mixtures, and the mechanism for the formation of diamond particles on Ti was analysed. Diamond particle density increased with increasing negative chuck bias to Ti substrate due to bias-enhanced nucleation of diamond and the threshold voltage was found at ∼-50 V. With increasing microwave power the evolution from micro-crystalline graphite layer to diamond layer was observed.

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

THE VELOCITY FIELD OF SUPERNOVA-DRIVEN TURBULENCE IN THE INTERSTELLAR MEDIUM

  • KIM JONGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.237-241
    • /
    • 2004
  • We perform numerical experiments on supernova-driven turbulent flows in order to see whether or not supernovae playa major role in driving turbulence in the interstellar medium. In a $(200pc)^3$ computational box, we set up, as initial conditions, uniformly magnetized gas distributions with different pairs of hydrogen number densities and magnetic field strengths, which cover the observed values in the Galactic midplane. We then explode supernovae at randomly chosen positions at a Galactic explosion rate and follow up the evolution of the supernova-driven turbulent flows by integrating numerically the ideal MHD equations with cooling and heating terms. From the numerical experiments we find that the density-weighted velocity dispersions of the flows are in the range of 5-10 km $s^{-l}$, which are consistent with the observed velocity dispersions of cold and warm neutral media. Additionally, we find that strong compressible flows driven by supernova explosions quickly change into solenoidal flows.

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

Probing the Conditions for the Atomic-to-Molecular Transition in the Interstellar Medium

  • Park, Gyueun;Lee, Min-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.50.2-51
    • /
    • 2021
  • Stars form exclusively in cold and dense molecular clouds. To fully understand star formation processes, it is hence a key to investigate how molecular clouds form out of the surrounding diffuse atomic gas. With an aim of shedding light in the process of the atomic-to-molecular transition in the interstellar medium, we analyze Arecibo HI emission and absorption spectral pairs along with TRAO/PMO 12CO(1-0) emission spectra toward 58 lines of sight probing in and around molecular clouds in the solar neighborhood, i.e., Perseus, Taurus, and California. 12CO(1-0) is detected from 19 out of 58 lines of sight, and we report the physical properties of HI (e.g., central velocity, spin temperature, and column density) in the vicinity of CO. Our preliminary results show that the velocity difference between the cold HI (Cold Neutral Medium or CNM) and CO (median ~ 0.7 km/s) is on average more than a factor of two smaller than the velocity difference between the warm HI (Warm Neutral Medium or WNM) and CO (median ~ 1.7 km/s). In addition, we find that the CNM tends to become colder (median spin temperature ~ 43 K) and abundant (median CNM fraction ~ 0.55) as it gets closer to CO. These results hints at the evolution of the CNM in the vicinity of CO, implying a close association between the CNM and molecular gas. Finally, in order to examine the role of HI in the formation of molecular gas, we compare the observed CNM properties to the theoretical model by Bialy & Sternberg (2016), where the HI column density for the HI-to-H2 transition point is predicted as a function of density, metallicity, and UV radiation field. Our comparison shows that while the model reproduces the observations reasonably well on average, the observed CNM components with high column densities are much denser than the model prediction. Several sources of this discrepancy, e.g., missing physical and chemical ingredients in the model such as the multi-phase ISM, non-equilibrium chemistry, and turbulence, will be discussed.

  • PDF

A Microstructural Design and Modeling of Neutron-Irradiated Materials (중성자 조사재의 미세구조 설계와 모델링)

  • Chang, Kunok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.347-351
    • /
    • 2020
  • A material changes its physical and chemical properties through the interaction with radiation and also the neutrons, which is electronically neutral so that the penetration depth is relatively deeper than that of other radioactive way including alpha or beta ray. Therefore, the radiation damage by neutron irradiation has been intensively investigated for a long time with respect to the safety of nuclear power plants. The damage induced by neutron irradiation begins with the creation of point defects in atomic scale in the unit of picoseconds, and their progress pattern can be characterized by microstructural defects, such as dislocation loops and voids. Their morphological characteristics affect the properties of neutron-irradiated materials, therefore, it is very important to predict the microstructure at a given neutron irradiation condition. This paper briefly reviews the evolution of radiation damage induced by neutron irradiation and introduces a phase-field model that can be widely used in predicting the microstructure evolution of irradiated materials.

Changes in the Components of Cell Wall in Persimmon Fruits with Ethylene Treatment (에틸렌 처리에 의한 감 과실 세포벽성분의 변화)

  • 강인규;장경호;변재균
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.247-255
    • /
    • 1998
  • This study was carried out to investigate changes in the flesh firmness, evolution of ethylene, cell wall components, and degradation and solubilization of polyuronide(PU) and polysaccharide(PS) in green(GP) and mature persimmon(MP) fruits according to testing time of ethylene(50${\mu}\ell$ㆍL$^{-1}$ ). When ethylene was treated in GP and MP, flesh firmness rapidly decreased and it was decreased more GP than MP. When ethylene were treated for 12 hours in GP, production of ethylene began after 3 days. The amount of ethylene product was maximum 16,000 ${\mu}\ell$ㆍL$^{-1}$ at 24 hours of ethylene treatment. However, ethylene was not producted until 7 days after 24 hours ethylene treatment at MP. The content of pectic substances decreased in the distilled- water, 0.05M $Na_2$CO$_3$,4M and 8M KOH-soluble fractions during softening according to increasing time of ethylene treatment. Arabinose and galactose were the major non-cellulosic neutral sugars in the 0.05M CDTA and 0.05M $Na_2$CO$_3$-soluble pectic fractions. Glucose, galactose and xylose were the major non-cellulosic neutral sugars in the 4M KOH- soluble hemicellulosic fraction. High molecular of PU and PS were degraded and solubilized in the distilled-water, 0.05M CDTA 0.05M $Na_2$CO$_3$ and 4M KOH-soluble fractions during time of ethylene treatment.

  • PDF

TRIO (Triplet Ionospheric Observatory) CINEMA

  • Lee, Dong-Hun;Seon, Jong-Ho;Jin, Ho;Kim, Khan-Hyuk;Lee, Jae-Jin;Jeon, Sang-Min;Pak, Soo-Jong;Jang, Min-Hwan;Kim, Kap-Sung;Lin, R.P.;Parks, G.K.;Halekas, J.S.;Larson, D.E.;Eastwood, J.P.;Roelof, E.C.;Horbury, T.S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.42.3-43
    • /
    • 2009
  • Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  • PDF