• Title/Summary/Keyword: neutral equation

Search Result 189, Processing Time 0.027 seconds

Cinnamic Acid Derivatives III, The Kinetics and Mechanism of the Nucleophilic Addition of Thioglycolic Acid to Benzalacetophenone Derivatives (신남산 유도체III, Benzalacetophenone 유도체에 대한 Thioglycolic acid의 친핵성 첨가반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Yong-Hyun;Park, Eun-Kyung;Ryu, Jung-Wook;Lee, Kwang-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.33-40
    • /
    • 1990
  • The Kinetics of the addition of benzalacetophenone derivatives was investigated by ultraviolet spectrophotometery in 5% dioxane $H_2O$ at $50^{\circ}C$. A rate equation was obtained in wide range of pH. The substituent effects on benzalacetophenone derivatives were studied, and addition were facilitated by electron attracting groups. The final product was benzalacetophenone-${\beta}$-thioglycolic acid synthesized by the addition of thioglycolic acid to benzalacetophenone. On the base of the rate equation, substituent effect, general base effect and final product, the plausible addition mechanism was proposed: Below pH 9.0, only neutral thioglycolic acid molecule was added to the carbon-carbon double bond, and in the range of pH $9.0{\sim}11.0$, neutral thioglycolic acid molecule and thioglycolic acid anion competitively attacted the double bond. By contrast, above pH 11.0, the reaction was dependent upon only the addition of thioglycolic acid anion.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Kinetic Studies on the Nucleophilic Addition of Cysteine to 3,4-Methylenedioxyphenylmethylene Malononitrile (3,4-Methylenedioxyphenylmethylene Malononitrile에 대한 Cysteine의 친핵성 첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Dong-Suk Rho;Young-Haeng Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.407-413
    • /
    • 1982
  • The rate constants of the nucleophilic addition of cysteine to 3,4-methylenedioxyphenylmethylene malononitrile were determined by UV Spectrophotometry and a rate equation which can be applied over wide pH range was obtained. On the basis of rate equation, it may be concluded that the rate constants were dependent upon only the concentration of hydroxide ion above pH 9.0, however, below pH 6.0, the reaction were initiated by the addition of neutral cysteine molecule to carbon-carbon double bond and at pH 7.0~9.0, the addition of a neutral cysteine molecule and it's anion occurred competitively.

  • PDF

Simulations of Pollutant Dispersion over Rectangular Building (사각 건물 주위의 오염물 확산에 대한 수치해석적 연구)

  • Hong B. Y.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-ε two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

Numerical Simulations of Using CIP Method for Dispersion of Pollutants around a Building (CIP 방법을 이용한 건물 주위의 오염물 확산에 대한 수치해석)

  • Hong, Bo-Young;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.723-728
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-e two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

Evaluation of Korean Thermal Sensation in Office Buildings During the Summer Season (여름철 사무실내 한국인의 온열감 평가)

  • Bae, G.N.;Lee, C.H.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.341-352
    • /
    • 1995
  • In this study, thermal parameters were measured and 213 occupants were also questioned in three office buildings located in Seoul during the summer season. Predicted mean vote-predicted percentage of dissatisfied(PMV-PPD) and standard new effective temperature(SET*) were used for evaluating Korean thermal sensation. The distribution of thermal sensation vote(TSV) and percentage of dissatisfied(PD) is very similar to that of PMV and PPD. By regression analysis, the following regression equation was obtained; TSV=0.339SET*-8.583. In this case, neutral temperature and comfort range are $25.3^{\circ}C$, $23.8{\sim}26.8^{\circ}C$ respectively. Present experimental results obtained from the field study is less sensitive to the temperature change than those obtained from the climate chamber study in Korea. But, thermal sensations are similar to each other near the neutral point. The neutral temperature and comfort range obtained by this experiment are higher than those of ANSI/ASHRAE Standard 55-1974 about $1.4{\sim}1.8^{\circ}C$.

  • PDF

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

A Study on Adjustment of Prediction Equation for Natural Frequency Using the Simplification of Section Transformation Method of Composite Deck Plate Floor Systems (합성 데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구)

  • 임지훈;김희철;홍원기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.731-738
    • /
    • 2001
  • The conventional techniques for the prediction of natural frequency are often used to estimate the floor vibration. However. the predicted frequency differs significantly from the measured one since the predicted equation is not able to proper1y treat various material type. Transformation of slab section is necessary to predict natural frequency of composite deck plate, and this effort is complicated due to the various shape of each deck plate. In this study, a new simplified methodology to transform slab section is proposed, which treats effective depth as the distance from the top of a concrete topping to neutral axis of each deck plate. Finally proposed equation with fairly reasonable result compared to the measured values is obtained. based on the modification of vibration equation from LRFD theory. This efforts enhance errors in predicting frequency up to 15%.

  • PDF

A study on bending strength of reinforced concrete filled steel tubular beam

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Tuohuti, Akenjiang
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.639-655
    • /
    • 2014
  • The mechanical characteristic of reinforced concrete filled steel tubular (RCFT) structures are differed from that of concrete filled tubular steel (CFT) structures because the reinforcement in RCFT largely affects the performance of core concrete such as ductility, strength and toughness, and hence the performance of RCFT should be evaluated differently from CFT. To examine the effect axial reinforcement on bending performance, an investigation on RCFT beams with varying levels of axial reinforcement is performed by the means of numerical parametric study. According to the numerical simulation results with 13 different ratios of axial reinforcement, it is concluded that the reinforcement has obvious effect on bending capacity, and the neutral axis of RCFT is different from CFT, and an evaluation equation in which the effect of axial reinforcement is considered for ultimate bending strength of RCFT is proposed.

Simulation of Neutral Flow around Plasma Actuator

  • Jung Suk-Young;Ahn Chang-Soo;Hong Seung-Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.306-308
    • /
    • 2006
  • Numerical simulations were carried out of the effects of momentum and heat produced by a plasma actuator on neutral flow. Momentum and heat generated during plasma discharge were modeled as a body force and heat source using results of experiments and DSMC of particle. These force and heat model were inserted into a Navier-Stokes equation and the flow around the plasma actuator could be explored by solving fluid dynamics only. Fluid simulation showed that force produced in DSMC generated a jet flow in the vicinity of the plasma actuator and heat accounted for density change.

  • PDF