• Title/Summary/Keyword: neurotrophin

Search Result 29, Processing Time 0.027 seconds

Expression of Neurotrophic Factors and Their Receptors in Rat Posterior Taste Bud Cells

  • Park, Dong-Il;Chung, Ki-Myung;Cho, Young-Kyung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • Taste is an important sense in survival and growth of animals. The growth and maintenance of taste buds, the receptor organs of taste sense, are under the regulation of various neurotrophic factors. But the distribution aspect of neurotrophic factors and their receptors in distinct taste cell types are not clearly known. The present research was designed to characterize mRNA expression pattern of neurotrophic factors and their receptors in distinct type of taste cells. In male 45-60 day-old Sprague-Dawley rats, epithelial tissues with and without circumvallate and folliate papillaes were dissected and homogenized, and mRNA expressions for neurotrophic factors and their receptors were determined by RT-PCR. The mRNA expressions of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), receptor tyrosine kinase B (TrkB), exclusion of nerve growth factor (NGF), neurotrophin-4/5 (NT4/5), receptor tyrosine kinase A (TrkA), receptor tyrosine kinase C (TrkC), and p75NGFR were observed in some population of taste cell. In support of this result and to characterize which types of taste cells express NT3, BDNF, or TrkB, we examined mRNA expressions of NT3, BDNF, or TrkB in the $PLC{\beta}2$ (a marker of Type II cell)-and/or SNAP25 (a marker of Type III cell)-positive taste cells by a single taste cell RT-PCR and found that the ratio of positively stained cell numbers were 17.4, 6.5, 84.1, 70.3, and 1.4 % for $PLC{\beta}2$, SNAP25, NT3, BDNF, and TrkB, respectively. In addition, all of $PLC{\beta}2$-and SNAP25-positive taste cells expressed NT3 mRNA, except for one taste bud cell. The ratios of NT3 mRNA expressions were 100% and 91.7% in the SNAP25-and $PLC{\beta}2$-positive taste cells, respectively. However, two TrkB-positive taste cells co-expressed neither $PLC{\beta}2$ nor SNAP 25. The results suggest that the most of type II or type III cells express BDNF and NT3 mRNA, but the expression is shown to be less in type I taste cells.

Effect of 1,2,3,4,6-penta-O-gallolyl-β-ᴅ-glucose on markers of cognitive function in human neuroblastoma SK-N-SH cell line (1,2,3,4,6-Penta-O-gallolyl-β-ᴅ-glucose가 인간 유래 신경모세포주인 SK-N-SH세포의 인지기능 표지자에 미치는 영향)

  • Yoon, Hyeon Seok;Park, So Yeon;Kim, Yoon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.715-721
    • /
    • 2021
  • Cognitive impairment and Alzheimer's disease are serious social problems associated with the rising elderly population in Korea. 1,2,3,4,6-Penta-O-galloyl-β-ᴅ-glucopyranose (PGG) is a gallotannin isolated from medicinal plants such as Rhus chinensis. This study was performed to evaluate the effect of PGG on biomarkers related to cognitive function in human neuroblastoma SK-N-SH cells. Inhibition of acetylcholinesterase (AChE) activity is considered to be one of the main therapeutic strategies. PGG inhibited AChE activity in the test tube as well as in SK-N-SH cells. In addition, PGG induced protein and mRNA expression of brain-derived neurotrophic factor (BDNF), which is a mammalian neurotrophin that plays major roles in the development, maintenance, repair, and survival of neuronal populations. As one of the underlying molecular mechanisms that induce BDNF expression, PGG induced the activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII)-cAMP response element binding protein (CREB) pathway. In conclusion, PGG may be an useful material for improving cognitive function.

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF

Associations between Clinical Characteristics and Plasma BDNF Levels of Panic Disorder (공황장애의 임상적 특성과 Brain-Derived Neurotrophic Factor 농도와의 관계)

  • Hwang, In-Ho;Park, Jong-Il;Yang, Jong-Chul
    • Anxiety and mood
    • /
    • v.11 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • Objective : Brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of several neuropsychiatric disorders. However, there are few studies on BDNF of panic disorder. In this study, we investigated plasma BDNF levels in patients with panic disorder, and evaluated whether there are associations between clinical characteristics of panic disorder and plasma BDNF levels. Methods : We included 110 patients with panic disorder and 110 health controls in the current study. Plasma BDNF levels were measured by the enzyme-linked immunosorbent assay (ELISA). Plasma BDNF level differences were evaluated according to the clinical characteristics, such as duration of illness, recent stressful life event, agoraphobia, and insomnia. Results : The mean plasma BDNF levels of patients with panic disorder were significantly lower, as compared with those of controls (192.50 pg/mL vs. 693.75 pg/mL, t=8.838, p<0.001). The mean plasma BDNF levels of patients who had recent stressful life events were significantly higher, as compared with those who did not ($269.79{\pm}358.96pg/mL$ vs. $136.94{\pm}187.06pg/mL$, t=-2.525, p=0.013). Conclusion : These results suggested that BDNF plays a potential role in the pathophysiology of panic disorder.

Biology of melanocytes and melanogenesis (멜라닌세포의 특성과 멜라닌 형성)

  • 박경찬
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.45-57
    • /
    • 1999
  • Melanocytes, derived from neural crest, make melanin and protect skin from the hazardous ultraviolet light. Melanocytes with dendritic process has similar morphology with neurogenic cells and share growth factor receptors such as neurotrophin receptors. Melanogenesis can be regulated by ultraviolet light and inflammation of the skin. In addition, several factors such as hormone, cytokines, arachidonic acid can affect the proliferation and melanogenesis of melanocytes. For melanogenesis, melanocytes need expression of various genes including tyrosinase, TRP-1, TRP-2. In addition, melanin need to be transferred from melanocytes to surrounding keratinocytes. The biology of melanocytes is complex and mechanism of melanocytes proliferation and melanogenesis is still under the investigation.

  • PDF

The Mechanism of Lotus Root Extract (LRE) as Neuro-Protective Effect in Alzheimer Disease (AD) (연근(蓮根)의 신경 보호 효과 및 기전연구)

  • Hong, Seung-Chul;Lee, Chia-Hung;Kim, Sang-Heon;Lee, Jin-Hee;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.309-320
    • /
    • 2013
  • Objectives : There is a possibility LRE as remedy in Alzheimer disease (AD), but it's nerve protection effect and mechanism have to be elucidate. In this research, we applied LRE on $A{\beta}_{25-35}$ pre-treated SH-SY5Y cells, to find out the nerve protection effect and mechanism in AD cell model. Methods : We tried to confirm that effect by experimenting with 20, 50, and $100{\mu}g/ml$ concentration of LRE as a medicine. Next experiment, we assessed damage effect which induced $A{\beta}_{25-35}$, known to cause AD, on SH-SY5Y cell. In addition, cellular viability test is executed under $H_2O_2$ treatment condition in a SH-SY5Y cell. Results : 1. In $A{\beta}_{25-35}$ treated SH-SY5Y cell, LRE exhibited an anti-phosphorylation effect about tau protein, JNK, and IKB. 2. LRE prevent nerve cell apoptosis, which indued $A{\beta}_{25-35}$ and oxidative stress, modify JNK engaged synaptic structure and $NF{\kappa}B$ induced p75-neurotrophin receptor polymorphism. Conclusions : We found that LRE prevented oxidative stress-induced cellular destruction, for example, increased SOD activity of $A{\beta}_{25-35}$ treated SH-SY5Y cell and reduced toxicity of oxygen free radical. Consequently, the ingredients of LRE have a role as a catalyzer for $A{\beta}_{25-35}$ clearance and as scavenger for active oxygen free radical.

Effects of Cupping Therapy on Memory Impairment after Hemorrhage in Rats (뇌출혈 동물 모델에서 부항이 뇌 인지기능 회복에 미치는 효과)

  • Lee, Ji Hye;Joh, Day;Choi, Young Ho;Chung, Chan Kyung;Choi, Yoon Suk;Cha, Mi Gyoung;Jung, Ji Wook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.789-794
    • /
    • 2013
  • Hemorrhage is a devastating type of stroke, accounts for 15-20% of all strokes. This disease can cause cognitive dysfunction with a very high mortality rate. Cupping therapy of Traditional Korean medicine has frequently been used to relieve a variety of diseases or clinical conditions, although not in the memory loss after hemorrhage. This study was designed to evaluate the effects of cupping therapy on learning and memory with Y-maze test, as well as its effects on different molecular changes in hippocampus following the induction of hemorrhage in rats. Cupping, using vacuum cupping machine, was applied at target area for 5 min daily for 7 consecutive days, commencing 1 day after brain impairment. As a result, induction of hemorrhage enhanced memory deficit, suppressed brain-derived neurotrophin factor (BDNF) in the hippocampus. Cupping treatment effectively reversed collagenase-induced cognitive impairment in SD rats which was represented by improvement of spontaneous alterations in Y-maze test. In addition, BDNF expression was enhanced after cupping therapy. The present results suggest that the therapeutic effects of cupping treatment after hemorrhage is involved in expression of BDNF.

Serum Brain-Derived Neurotrophic Factor in Schizophrenia (정신분열병 환자의 혈청에서 Brain-Derived Neurotrophic Factor 증가)

  • Kim, So Youn;Min, Kyung Joon;Kee, Baik Seok;Park, Doo Byung;Kim, Joo Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • Objectives:Abnormalities in neurotrophic factors that regulate neuronal development and synaptic plasticity are often implicated as some causes of schizophrenia. In previous studies, researchers reported that brain and serum BDNF levels underwent similar changes during maturation and aging processes in rats. They also found a positive correlation between serum and cortical BDNF levels. In this study, we investigated whether the serum levels of BDNF in Korean schizophrenic patients would be different from those of healthy controls. Methods:Using an ELISA kit, serum BDNF levels were assessed in schizophrenic group(N=49) and control group(N=50). Results:Serum BDNF levels in the schizophrenic group($36.29{\pm}19.78$ng/ml) were significantly higher than those in control group($22.4{\pm}14.4$ng/ml). The BDNF levels did not correlate with duration of treatment, age or daily dose of antipsychotics in patients with schizophrenia. Conclusions:This result suggests that schizophrenia is characterized by high serum BDNF levels and supports the hypothesis of neurotrophic factor involvement in psychotic disorder. Serum BDNF level is likely to be one of the possible biological markers for schizophrenia.

  • PDF

Expressional Profiling of Molecules Associated with Epigenetic Methylation-Related Fertility in the Rat Testis during Postnatal Period

  • Seo, Hee-Jung;Lee, Seong-Kyu;Baik, Haing-Woon;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2012
  • The male reproduction is precisely controlled by a number of intrinsic and extrinsic factors. These factors usually involve in expressional regulation of various molecules influencing on sperm production in the testis. A number of ways are employed to control the transcription of specific genes, including epigenetic modifications of DNA and histone molecules. DNA methylation of CpG dinucleotides is a commonly used regulatory mechanism for testicular genes associated with the fertility. Previous studies have demonstrated the infertility induced by improper DNA methylation of these genes. In the present research, we attempted to determine transcriptional expression of some of these genes in the rat testis at different postnatal ages using real-time PCR analysis. These genes include neurotrophin 3 (Ntf3), insulin-like growth factor II (Igf2), JmjC-domain-containing histone demethylase 2A 1 (Jhm2da), paired box 8 transcription factor (Pax8), small nuclear ribonucleoprotein polypeptide N (Snrpn), and 5,10-methylenetetrahydrofolate reductase (Mthfr). The expression levels of Ntf3, Igf2, and Snrpn genes were the highest at the neonatal age, followed by transient decreases at the prepubertal age. Expression of Jhm2da and Mthfr genes were continuously increased from the neonate to 1 year of age. The levels of Pax8 mRNA at the early ages were higher than those at the later ages of postnatal development. These findings suggest that expression of some fertility-associated testicular genes in the rat during postnatal period could be differentially regulated by the control of the degree of DNA methylation.

TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression

  • Kim, Min Soo;Lee, Won Sung;Jin, Wook
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.258-265
    • /
    • 2016
  • In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.