• Title/Summary/Keyword: neurotransmitter release

Search Result 61, Processing Time 0.03 seconds

Characterization of Norepinephrine Release in Rat Posterior Hypothalamus Using in vivo Brain Microdialysis

  • Sung, Ki-Wug;Kim, Seong-Yun;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • In the present study, we used the microdialysis technique combined with high performance liquid chromatography (HPLC) and electrochemical detection to measure the extracellular levels of norepinephrine (NE) in the posterior hypothalamus in vivo, and to examine the effects of various drugs, affecting central noradrenergic transmission, on the extracellular concentration of NE in the posterior hypothalamus. Microdialysis probes were implanted stereotaxically into the posterior hypothalamus (coordinates: posterior 4.3 mm, lateral 0.5 mm, ventral 8 mm, relative to bregma and the brain surface, respectively) of rats, and dialysate collection began 2 hr after the implantation. The baseline level of monoamines in the dialysates were determined to be: NE $0.17{\pm}0.01,$ 3,4-dihydroxyphenylacetic acid (DOPAC) $0.94{\pm}0.07,$ homovanillic acid (HVA) $0.57{\pm}0.05$ pmol/sample (n=8). When the posterior hypothalamus was perfused with 90 mM potassium, maximum 555% increase of NE output was observed. Concomitantly, this treatment significantly decreased the output of DOPAC and HVA by 35% and 28%, respectively. Local application of imipramine $(50\;{\mu}M)$ enhanced the level of NE in the posterior hypothalamus (maximum 200%) compared to preperfusion control values. But, DOPAC and HVA outputs remained unchanged. Pargyline, an irreversible monoamine oxidase inhibitor, i.p. administered at a dose of 75 mg/kg, increased NE output (maximum 165%), while decreased DOPAC and HVA outputs (maximum 13 and 12%, respectively). These results indicate that NE in dialysate from the rat posterior hypothalamus were neuronal origin, and that manipulations which profoundly affected the levels of extracellular neurotransmitter had also effects on metabolite levels.

5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Kim, Seong-Yun;Cho, Young-Jin;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • Striatum is involved in the control of movement and habitual memory. It receives glutamatergic input from wide area of the cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from the raphe nuclei. In our study, the effects of 5-HT on synaptic transmission were studied in the rat corticostriatal brain slice using in vitro whole-cell recording technique. 5-HT inhibited the amplitude as well as frequency of spontaneous excitatory postsynaptic currents (sEPSC) significantly, and neither ${\gamma}-aminobutyric$ acid (GABA)A receptor antagonist bicuculline (BIC), nor $N-methyl-_{D}-aspartate$ (NMDA) receptor antagonist, $_{DL}-2-amino-5-phosphonovaleric$ acid (AP-V) could block the effect of 5-HT. In the presence non-NMDA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenxo[f] quinoxaline-7-sulfonamide (NBQX), the inhibitory effect of 5-HT was blocked. We also figured out that 5-HT change the channel kinetics of the sEPSC. There was a significant increase in the rise time during the 5-HT application. Our results suggest that 5-HT has an effect on both pre- and postsynaptic site with decreasing neurotransmitter release probability of glutamate and decreasing the sensitivity to glutamate by increasing the rise time of non-NMDA receptor mediated synaptic transmission in the corticostriatal synapses.

Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa;Cho, Eui-Sic
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type $Ca^{2+}$ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type $Ca^{2+}$ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM $Ba^{2+}$ as a charge carrier. Cholic acid (CA, $10^{-6}M$) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type $Ca^{2+}$ channel, which appeared to be due to an increase in (no activity) sweeps. For example, the proportion of sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type $Ca^{2+}$ channel gating at a concentration as low as $10^{-6}M$. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type $Ca^{2+}$ channel function may be beneficial against overexcitation of the synapses.

The Study on the Role of Prostaglandin in Contraction of Vas Deferens (정관운동에 있어서 prostaglandin 의 역할에 관한 연구)

  • Park, Won-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 1983
  • Prostaglandin(PG) is ubiquitously distributed in most mammalian tissue and their actions are complicated. Especially in autonomic nervous system, there are evidences indicating that PGs act as neuromodulators i.e., PGs, which are released in the vicinity of autonomic neuroeffector junctions, influence the release and the response of the neurotransmitter. Present study was undertaken to elucidate the interrelationship between $PGF_{2\alpha}$ and adrenergic ${\alpha}_2-receptor$ function in electrical field stimulation induced contractile response of vas deferens in rat. Male rat, weighing 150{\sim}200\;g, was sacrificed and vas deferens was obtained. The isolated vas deferens strip was placed between two platinum electrodes in temperature controlled $(37^{\circ}C)$ muscle chamber containing Tyrode's solution and the electrical field stimulation(EFS) induced contraction was recorded with Grass Polygraph(Model 7) via force displacement transducer (FT .03, Grass). The results are summarized as follows: 1) Electrical field stimulation for 1sec( 1 msec, 40 cps) induced contraction of vas deferens was completely blocked by tetrodotoxin. 2) Bretylium caused marked inhibition of the EFS-induced contraction, hut tyramine and cocaine augmented the contraction. 3) EFS-induced contraction was inhibited or little affected in distal portion of vas deferens by norepinephrine or methoxamine, but the contraction was rather augmented by the ${\alpha}-agonists$ in proximal portion. 4) Clonidine inhibited the EFS-induced contraction proportionally to the concentration in distal portion, which was blocked by yohimbine pretreatment, but in the presence of $PGF_{2\alpha}$ the blockade by yohimbine was reversed. 5) Indomethacin pretreatment reduced the effect of clonidine, but addition of $PGF_{2\alpha}$ after washing-out the indomethacin caused the contraction to the control level. From these results it is suggested that PG synthesis is a necessary step and the PG itself has a permissive role in ${\alpha}_2-adrenoceptor$ action in rat vas deferens.

  • PDF

A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system

  • Kim, Hee Jin;Kim, Pitna;Shin, Chan Young
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.8-29
    • /
    • 2013
  • Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng's therapeutic effects. These include Alzheimer's disease, Parkinson's disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.

Arachidonic Acid Ingibits Norepinephrine Release through Blocking of Voltage-sensitive $Ca^{2+}$ Channels in PC12 Cells

  • Choi, Se-Young;Park, Tae-Ju;Choi, Jun-Ho;Kim, Kyong-Tai
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • We studied the mechanism of arachidonic acid on the secretion of a neurotransmitter in rat pheochromocytoma PC12 cells. Arachidonic acid inhibited the 70 mM $K^+$-induced secretion of norepinephrine. Arachidonic acid also inhibited the 70 mM $K^+$-induced $Ca^{2+}$ mobilization which is due to the opening of the voltage-sensitive $Ca^{2+}$ channels (VSCC). Both the half maximal inhibitory concentration ($IC_{50}$) of the norepinephrine secretion and VSCC coincided at 30 uM. The major oxidized metabolites of arachidonic acid, prostaglandins did not mimic the inhibitory effect of arachidonic acid. Nordihydroguaiaretic acid (NDGA) and indomethacin which are inhibitors of lipoxygenase and cyclooxygenase, respectively, did not block the inhibitory effect of arachidonic acid. The results suggest that arachidonic acid serves as a signal itself, not in the form of metabolites. The pretreatment of various $K^+$ channel blockers such as 4-aminopyridine, tetraethylarnmonium, glipizide, or glibenclamide also did not show any effect on the inhibitory effect of arachidonic acid. Through these results we suggest that arachidonic acid regulates VSCC directly and affects the secretion of neurotransmitters.

  • PDF

Characterization of a novel protein interacting with rat large-conducatance $Ca^{2+}$-actived $K^+$ channel $a\lpha$-subunit rSlo

  • Aegyoung Cho;Lee, Kwang-Hee;Sungmin Song;Bongwoon Hwang;Jung, Yong-Keun;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.43-43
    • /
    • 2003
  • Large-conductance $Ca^{2+}$-actived $K^{+}$ channels ($BK_{Ca}$ channels) play a key role in setting the pace of contractile activity in muscle and are involved in the regulation of neurotransmitter release in neuron. $BK_{Ca}$ channels are activated by depolarizing membrane potential and the elevated level of intracellular calcium. Using yeast-two hybrid assay, we have identified a novel protein interacting with the cytosolic carboxyl terminus of rSlo, the brain isoform of rat large-conductance $Ca^{2+}$-activated $K^{+}$ channel $\alpha$-subunit. The novel gene encodes 51 kDa protein and is named as SIRK(rSlo-interacting RGS-like protein). SIRK is expressed in various tissues and localized in the cytosolic and the membrane fraction. Biochemical and immunological studies indicated that SIRK physically interacted with the cytosolic region of rSlo. To investigate whether SIRK can modulate the activity of rSlo, GFP-fused SIRK and rSlo were transiently transfected into COS-7 cells and the effects of SIRK was studied using electrophysiological means. We concluded that the overexpression of SIRK alters the surface expression of rSlo channel with only a limited effect on the biophysical characteristics of the channel.the channel.

  • PDF

The Study on the Analgesic Effect and its Serotonergic Mechanism of Electroacupuncture in the Rat Model of Collagen-induced Arthritis (Collagen 유발(誘發) 관절염(關節炎) 동물모델에 대(對)한 전침자극(電鍼刺戟)의 진통효과(鎭痛效果) 및 그 기전(機轉)에 관(關)한 연구(硏究) - serotonergic receptor(5-HT1, 5-HT2)와 관련(關聯)된 기전연구(機轉硏究) -)

  • Baek, Yong-hyeon;Yang, Hyung-in;Park, Dong-suk;Choi, Do-young
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.51-62
    • /
    • 2004
  • Objective: To investigate the analgesic effect and its serotonergic mechanism, especially related with 5-HTI and 5-HT2 receptor, of electroacupuncture(EA) in the rat model of collagen-induced arthritis(CIA). Methods : Immunization of male Sprague-Dawley rats with bovine type II (C II) collagen emulsified in Freund's incomplete adjuvant, followed by a booster injection 14 days later, leads to development of arthritis in more than 70% of rats by 21 days postinjection. After three weeks of first immunization, EA stimulation(2 Hz, 0.07 mA, 0.3 ms) was delivered into Jogsamni($ST_{36}$) for 30 minutes. Analgesic effect was evaluated by tail flick latency(TFL). We compared the analgesic effect of EA with TFLs between pretreatment of normal saline and pretreatment of spiroxatrine (5-HT1 receptor antagonist, 1mg/kg, intraperitoneal) and spiperone (5-HT2 receptor antagonist, 1 mg/kg, intraperitoneal) in CIA. Results : 1. TFLs were gradually decreased in CIA as increasing severity of arthritis. 2. Jogsamni($ST_{36}$) EA stimulation in CIA increased TFLs and the effect lasted for 60 minutes. 3. Increased TFLs with Jogsamni($ST_{36}$) EA stimulation were inhibited by pretreatment of spiroxatrine and spiperone in CIA. Conclusions : Jogsamni($ST_{36}$) EA showed analgesic effects in CIA The analgesic effects of Jogsamni($ST_{36}$) EA were inhibited by spiroxatrine and spiperone pretreatment. These observations suggest that 5-HT1 and 5-HT2 serotonergic receptor, which involve the release of serotonin neurotransmitter, play an important roles in analgesic mechanism of EA stimulation.

  • PDF

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

Endogenous glutamate enhances survival rates of neurons via activating mitochondrial signalings in hippocampal neuron (미토콘드리아 기능을 통해 내인성 글루탐산이 신경세포 생존에 미치는 영향)

  • Noh, Jin-Woo;Kim, Hye-Ji;Eun, Su-Yong;Kang, Moon-Suk;Jung, Sung-Cherl;Yang, Yoon-Sil
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • Neuronal excitotoxicity induces mitochondrial dysfunction and the release of proapoptotic proteins. Excitotoxicity, the process by which the overactivation of excitatory neurotransmitter receptors leads to neuronal cell death. Neuronal death by excitotoxicity was related to neuronal degenerative disorders and hypoxia, results from excessive exposure to excitatory neurotransmitters, such as glutamate. Glutamate acts at NMDA receptors in cultured neurons to increase the intracellular free calcium concentration. Therefore endogenous glutamate may be a key factor to regulate neuronal cell death via activating $Ca^{2+}$ signaling. For this issue, we tested some conditions to alter intracellular $Ca^{2+}$ level in dissociated hippocampal neurons of rats. Cultured hippocampal neuron were treated by KCl (20 mM), $CaCl_2$ (3.8 mM) and glutamate ($5{\mu}M$) for 24 hrs. Interestingly, The Optical Density of hippocampal neurons was increased by high KCl application in MTT assay data. This enhanced response by high KCl was dependent on synaptic $Ca^{2+}$ influx but not on intracellular $Ca^{2+}$ level. However, the number of neurons seemed to be not changed in Hoechst 33342 staining data. These results suggest that enhancement of synaptic activity plays a key role to increase mitochondrial signaling in hippocampal neurons.