• Title/Summary/Keyword: neurotoxicity

Search Result 504, Processing Time 0.036 seconds

Inhibition of ${\beta}-amyloid_{1-40}$ Peptide Aggregation and Neurotoxicity by Citrate

  • Park, Yong-Hoon;Kim, Young-Jin;Son, Il-Hong;Yang, Hyun-Duk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • The accumulation of ${\beta}$-amyloid (A${\beta}$) aggregates is a characteristic of Alzheimer's disease (AD). Furthermore, these aggregates have neurotoxic effects on cells, and thus, molecules that inhibit A${\beta}$ aggregate formation could be valuable therapeutics for AD. It is well known that aggregation of A${\beta}$ depends on its hydrophobicity, and thus, in order to increase the hydrophilicity of A${\beta}$, we considered using citrate, an anionic surfactant with three carboxylic acid groups. We hypothesized that citrate could reduce hydrophobicity and increase hydrophilicity of A${\beta}_{1-40}$ molecules via hydrophilic/electrostatic interactions. We found that citrate significantly inhibited A${\beta}_{1-40}$ aggregation and significantly protected SH-SY5Y cell line against A${\beta}_{1-40}$ aggregates-induced neurotoxicity. In details, we examined the effects of citrate on A${\beta}_{1-40}$ aggregation and on A${\beta}_{1-40}$ aggregates-induced cytotoxicity, cell viability, and apoptosis. Th-T assays showed that citrate significantly inhibited A${\beta}_{1-40}$ aggregation in a concentration-dependent manner (Th-T intensity: from 91.3% in 0.01 mM citrate to 82.1% in 1.0 mM citrate vs. 100.0% in A${\beta}_{1-40}$ alone). In cytotoxicity and viability assays, citrate reduced the toxicity of A${\beta}_{1-40}$ in a concentration-dependent manner, in which the cytotoxicity decreased from 107.5 to 102.3% as compared with A${\beta}_{1-40}$ aggregates alone treated cells (127.3%) and the cell viability increased from 84.6 to 93.8% as compared with the A${\beta}_{1-40}$ aggregates alone treated cells (65.3%). Furthermore, Hoechst 33342 staining showed that citrate (1.0 mM) suppressed A${\beta}_{1-40}$ aggregates-induced apoptosis in the cells. This study suggests that citrate can inhibit A${\beta}_{1-40}$ aggregation and protect neurons from the apoptotic effects of A${\beta}_{1-40}$ aggregates. Accordingly, our findings suggest that citrate administration should be viewed as a novel neuroprotective strategy for AD.

Effects of Cadmium on the Gene Expression Profile in the Rat Basal Ganglia (카드뮴이 흰쥐 뇌기저핵의 유전자 발현에 미치는 영향)

  • Lee, Chae-Kwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2010
  • This study was aimed at investigating the gene expression profile in basal ganglia of cadmium exposed rat based on cDNA array analysis. For cDNA array analysis, adult Sprague-Dawley male rats (350 ${\pm}$ 25 g) were intraperitoneally injected with 2.0 mg/kg body weight/day of CdCl2 (0.3 ml) for 5 days. For doserelated gene expression analysis rats were intraperitoneally injected with 0.0, 0.1, 0.3, 1.0 mg/kg body weight/day of CdCl$_2$ for 5 days. Control rats were injected with equal volume of saline. Cadmium concentration of brain was analyzed by atomic absorption spectrophotometer. For cDNA array, RNA samples were extracted from basal ganglia and reverse-transcribed in the presence of [${\alpha}$32P]-dATP. Membrane sets of the Atlas Rat 1.2 array II and Toxicology array 1.2 (Clontech, Palo Alto, CA) were hybridized with cDNA probe sets. RT-PCR was employed to validate the relative gene expression patterns obtained from the cDNA array. Northern blot hybridization methods were employed to assess the dose-related gene expression. Among the 2352 cDNAs, 671 genes were detected in both array sets and 63 genes of 38 classes showed significant (more than two fold) changes in expression. Thirty five of these genes were up-regulated and twenty eight were down-regulated in the cadmium exposed group. According to the dose-related gene expression analysis, heat shock 27 kDa protein (HSP27), neurodegeneration-associated protein 1 (Neurodap 1) genes were significantly up-regulated and melatonin receptor 1a (Mel1a), Kinesin family member 3C (KIF3C), novel kinesinrelated protein (KIF1D) genes were significantly downregulated even in the low-dose of cadmium exposed group (0.1 mg/kg body weight/day). Conclusions Sixty three genes detected in this study can give some more useful informations about the cadmium-induced neurotoxicity in the basal ganglia. As well as, HSP27, Neurodap1, Mel1a, KIF3C and KIF1D genes may be useful for the study of the cadmium-induced neurotoxicity because these genes showed dramatic changes of mRNA levels in response to the low dose of cadmium exposure.

Neuroprotective and Memory Enhancing Effects of Pinelliae rhizoma Extract (반하가 CT105에 의한 신경세포 상해 및 백서의 기억에 미치는 영향)

  • Gang Sang-Yeol;Lee So-Yeon;Yoon Hyeon-Deok;Shin Oh-Chul;Park Chang-Gook;Park Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.27-42
    • /
    • 2005
  • Objectives : Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease characterized by amyloid plaques and neurofibrillary tangles. These plaques are associated with degenerating neuronal processes and consist primarily of fibrillary aggregates of beta-amyloid$ protein, generated from amyloid precursor protein (APP). Another amyloidogenic fragment, the carboxyl terminus (CT) of APP, which is composed of 99-105 amino acid residues containing the complete $A{\beta}$ sequence, also appears to be toxic to neurones. Recent evidence suggest that CT105, carboxy terminal 105 amino acids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. Methods : Although a variety of oriental prescriptions including Pinelliae rhizoma have traditionally been utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. In the present study, we investigated effects of the dichloromethane extract of Pinelliae rhizoma (PINR) on neurotoxicity and the formation of reactive oxygen species (ROS) and nitric oxide (NO) in SK-N-SH cells overexpressed with CT105. In addition, we evaluated its radical scavenging activity and effects on acetylcholinesterase (AChE) activity. Furthermore, effects on cognitive deficits induced by scopolamine treatment in rats were evaluated. Results ; We found in this study that PINR significantly inhibited apoptotic neuronal death induced by CT105 overexpression in SK-N-SH cells. Based on morphological examinations by phase-contrast microscopy, PINR reversed apoptotic changes of CT105-expressed cells. It was also found that PINR significantly promoted neurite outgrowth and inhibited formation of ROS nd NO. PINR was shown to scavenge DPPH radicals and noncompetitively inhibit AChE activity. Furthermore, it reduced scopolamine-induced memory impairment in rata, assessed by passive avoidance test. Conclusions : Taken together, these results demonstrate that PINR exhibits neuroprotective, antioxidant, and memory enhancing effects, and therefore may bs beneficial for the treatment of AD.

  • PDF

Effects of Chitosan on the Toxicity of Environmental Pollutants (해양바이오물질이 PCB의 독성작용에 미치는 영향)

  • Lee, Hyon-Gyo;Kim, Hae-Young;Yang, Jae-Ho
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.102-107
    • /
    • 2007
  • Environmental contamination becomes a great public concern as our society gets industrialized rapidly. The present study examine the role of chitosan in a effort to intervene the environmental pollutant-induced toxicity. PCB-induced neurotoxicity with respect to the PKC signaling was examined. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. PCB showed the alteration of PKC signaling pathway. The alteration was structure-dependent. Mono-ortho-substituted congeners at a high dose showed a significant increase of total PKC activity at [$^3H$]PDBu binding assay, indicating that mono-ortho-substituted congeners are more neuroactive than non-ortho-substituted congeners in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-beta II and -epsilon were activated with mono-ortho-substituted congeners exposure. The result suggests that the position with ortho has a higher potential of altering the signaling pathway. Alteration of PKC was blocked with treatment of high molecular weight of chitosan. The study demonstrated that the ortho position in PCBs are important in assessing the structure-activity relationship. The results suggest a potential use of marine bioactive materials as a means of nutritional intervention to prevent the harmful effects of pollutant-derived toxicity.

  • PDF

Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響))

  • Kim, Hyoung-Soon;Bae, Young-Chun;Lee, Sang-Min;Kim, Kyung-Yo;Won, Kyoung-Sook;Sihm, Gyue-Hearn;Park, Su-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.15 no.1
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF

Panax ginseng as an adjuvant treatment for Alzheimer's disease

  • Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Seog-Young;Cho, Ik-Hyun;Kim, Hyoung-Chun;Rhim, Hyewhon;Kim, Manho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2018
  • Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid ${\beta}$-protein ($A{\beta}$) formation by inhibiting ${\beta}$- and ${\gamma}$-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and $A{\beta}$-induced neurotoxicity, and decrease $A{\beta}$-induced production of reactive oxygen species and neuro-inflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates $A{\beta}$-induced cholinergic deficits in AD models. Similarly, gintonin inhibits $A{\beta}$-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce $A{\beta}$ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.

Protective Effects of Ginsenosides on Cyanide-induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Seong, yeon-Hee;Koh, Sang-Bum;Jo, Soon-Ok
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.196-201
    • /
    • 2000
  • Effects of ginsenosides on NaCN-induced neuronal cell death were studied in cultured rat cerebellar granule cells. NaCN produced a concentration-dependent (1-10 mM) reduction of cell viability (measured by frypan blue exclusion test), that was blocked by N-methyl-D-aspartate receptor antagonist (MK-801) and L-type Ca$\^$2+/ channel blocker (verapamil). Pretreatment with ginsenosides (Rb$_1$, Rc, Re, Rf and Rg$_1$) significantly decreased the neuronal cell death in a concentration range of 0.5∼5$\mu\textrm{g}$/ml. Ginsenosides Rb$_1$ and Rc (5 $\mu\textrm{g}$/ml) inhibited glutamate release into medium induced by NaCN (5 mM). NaCN (1 mM)-induced increase of [Ca$\^$2+/], was significantly inhibited by the pretreatment of Rb$_1$ and Rc (5 $\mu\textrm{g}$/ml). Other ginsenosides caused relatively little inhibition on the elevation of glutamate release and of (Ca$\^$2+/). These results suggest that the NaCN-induced neurotoxicity was related to a series of cell responses consisting of glutamate release and [Ca$\^$2+/]i elevation via glutamate (NMDA and kainate) receptors and resultant cell death, and that ginsenosides, especially Rb$_1$ and Rc, prevented the neuronal cell death by the blockade of the NaCN-induced Ca$\^$2+/influx.

  • PDF

Neuroprotective Effects of Herbal Ethanol Extract from Gynostemma pentaphyllum on Dopamine Neurons in Rotenone- and MPTP-induced Animal Model of Parkinson's Disease (Rotenone- 및 MPTP-유도 파킨슨병 동물 모델에서 돌외 에탄올 추출물의 Dopamine 신경세포 보호작용)

  • Suh, Kwang Hoon;Choi, Hyun Sook;Shin, Kun Seong;Zhao, Ting Ting;Kim, Seung Hwan;Hwang, Bang Yeon;Lee, Chong Kil;Lee, Myung Koo
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.77-86
    • /
    • 2013
  • The neuroprotective effects of herbal ethanol extract (GP-EX) from Gynostemma pentaphyllum on dopamine neurons in animal model of Parkinson's disease (PD) were investigated. Rats and mice were administered with rotenone (2.5 mg/kg) for 28 days and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) for 5 days for the PD models, respectively and the animals were simultaneously treated with GP-EX (30 mg/kg, daily). After preparing the PD models, the animals were also administered with L-DOPA (10 mg/kg) for 14 days with or without GP-EX treatment. Treatment with GP-EX (30 mg/kg) inhibited the rotenone- and MPTP-induced neurotoxic effects in dopamine neurons of rats or mice, which was determined by the numbers of tyrosine hydroxylase-immunohistochemical staining survival cells, as well as the levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid. GP-EX (30 mg/kg) also showed the protective effects on neurotoxicity which was induced by long-term administration of L-DOPA (10 mg/kg) in rotenone- and MPTP-induced animal model of PD. The used doses of GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting, in rats and mice during the treatment periods. These results suggest that GP-EX has the protective functions against chronic L-DOPA-induced neurotoxic reactions in dopamine neurons of rotenone- and MPTP-induced animal model of PD. Therefore, the natural GP-EX may be beneficial in the prevention of PD progress and L-DOPA-induced neurotoxicity in PD patients.

Protective Effect of Methanolic Extracts from Dendrobium nobile Lindl. on $H_{2}O_{2}$-induced Neurotoxicity in PC12 cells (석곡 MeOH 추출물이 $H_{2}O_{2}$에 의한 신경세포 보호효과에 미치는 영향)

  • Yoon, Mi-Young;Kim, Ju-Young;Hwang, Ji-Hwan;Cha, Mi-Ran;Lee, Mi-Ra;Jo, Kyung-Jin;Park, Hae-Ryong
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.63-67
    • /
    • 2007
  • The neuroprotective effect of methanolic extracts from Dendrobium nobile Lindl. (DME) against $H_{2}O_{2}$-induced neurotoxicity in PC12 cells was investigated. The treatment of PC12 cells with various DME concentrations under $H_{2}O_{2}$ resulted in the induction of protective effect in a dose-dependent manner, as determined by the results of an MTT reduction assay, an LDH release assays, and a morphological assay. Interestingly, we also detected reduction of apoptotic bodies and inhibition of caspase-3 activity by DME in $H_{2}O_{2}$-indeced PC12 cells. These data show that the neuroprotective effect of DME against PC12 cells might be related to the suppression of caspase-3 activation. Therefore, these results suggest that DME could be a new potential candidate as chemotherapeutic agents against neuronal diseases.

Effects of Ginseng Saponins in Energy Metabolism, Memory, and Anti-neurotoxicity

  • Wang Lawrence C.H.;Lee Tze-fun
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.55-65
    • /
    • 2002
  • Ginseng has been used as a key constituent in traditional medicine prescriptions for centuries. Other than its well-known anti-stress and adaptogenic properties, ginseng has also been shown to be very effective in treating age-related deterioration in metabolic and memory functions. Although it is generally believed that the saponin (GS) fraction of the ginseng root accounts for the bioactivity of ginseng, a direct demonstration on which ginsenoside does what is still generally lacking. In the past decade, our laboratory has endeavored to identify the active GS components involved in energy metabolism, memory, and anti-neurotoxicity. To examine the ergogenic effects of GS in enhancing aerobic capacity, rats were subjected to either severe cold ($40^{\circ}C$ under helium-oxygen, two hours) or exercise workload $(70\%\;VO_{2}max,$ to exhaustion). Acute systemic injection (i.p.) of ginseng GS (5-20 mg/kg) significantly elevated both the total and maximum heat production in rats and improved their cold tolerance. However, pretreating the animal with the optimal dose (10 mg/kg) of GS devoid of $Rg_1\;and\;Rb_1$ failed to elicit any beneficial effects in improving cold tolerance. This indicates that either $Rb_1\;and/or\;Rg_1$ may be essential in exemplifying the thermogenic effect of GS. Further studies showed that only pretreating the animals with $Rb_1(2.5-5\;mg/kg),\;but\;not\;Rg_l,$ resulted in an increase in thermogenesis and cold tolerance. In contrast to the acute effect of GS on cold tolerance, enhancement of exercise performance in rats was only observed after chronic treatment (4 days). Further, we were able to demonstrate that both $Rb_1\;and\;Rg_1$ are effective in enhancing aerobic endurance by exercise. To illustrate the beneficial effects of GS in learning and memory, a passive avoidance paradigm (shock prod) was used. Our results indicated that the scopolamineinduced amnesia can be significantly reversed by chronically treating (4 days) the rats with either $Rb_1\;or\;Rg_1$ (1.25 - 2.5 mg/kg). To further examine its underlying mechanisms, the effects of various GS on ${\beta}-amyloid-modulated$ acetylcholine (ACh) release from the hippocampal slices were examined. It was found that inclusion of $Rb_1$ (0.1 ${\mu}M$), but not $Rg_1$, can attenuate ${\beta}-amyloid-suppressed$ ACh release from the hippocampal slices. Our results demonstrated that $Rb_1\;and\;Rg_1$ are the key components involved in various beneficial effects of GS but they may elicit their effects through different mechanisms.

  • PDF