• 제목/요약/키워드: neuroplasticity

검색결과 33건 처리시간 0.025초

Protective Effects of Silibinin and Its Possible Mechanism of Action in Mice Exposed to Chronic Unpredictable Mild Stress

  • Yan, Wen-Jing;Tan, Ying-Chun;Xu, Ji-Cheng;Tang, Xian-Ping;Zhang, Chong;Zhang, Peng-Bo;Ren, Ze-Qiang
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.245-250
    • /
    • 2015
  • Silibinin, a natural flavonoid antioxidant isolated from extracts of the milk thistle herb, has recently been identified as having anti-hepatotoxic and anticancer properties. In this paper, we investigated the effects of silibinin on behavior and neuroplasticity in mice subjected to chronic unpredictable mild stress (CUMS). After 5 consecutive weeks of CUMS, the mice were treated with silibinin (100 mg/kg, 200 mg/kg and 400 mg/kg by oral gavage) for 3 consecutive weeks. The results showed that silibinin administration significantly alleviated the CUMS-induced depressive-like behavior, including the total number of squares crossed and the frequency of rearing in the open field test, the immobility time in the tail suspension test and the forced swimming test. Furthermore, silibinin treatment increased the levels of brain-derived neurotrophic factor (BDNF), serotonin (5-HT) and norepinephrine (NE) in the prefrontal cortex and hippocampus. Our study provides new insight into the protective effects of silibinin on the depressive status of CUMS mice, specifically by improving neuroplasticity and neurotransmission.

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.

A Systematic Review of Cortical Excitability during Dual-Task in Post-Stroke Patients

  • Soyi Jung;Chang-Sik An
    • Physical Therapy Rehabilitation Science
    • /
    • 제13권2호
    • /
    • pp.213-222
    • /
    • 2024
  • Objective: Stroke is a leading cause of disability worldwide, often leaving survivors with significant cognitive and motor impairments. Dual-task (DT), which involves performing cognitive and motor tasks simultaneously, can influence brain activation patterns and functional recovery in stroke patients. Design: A systematic review Methods: Following PRISMA guidelines, databases including MEDLINE, CINAHL, Embase, and Web of Science were searched for studies assessing cortical activation via functional near-infrared spectroscopy (fNIRS) during DT performance in stroke patients. Studies were selected based on predefined eligibility criteria, focusing on changes in hemodynamic responses and their correlation with task performance. Results: Eight studies met the inclusion criteria. Findings indicate that DT leads to increased activation in the prefrontal cortex (PFC), premotor cortex (PMC), and posterior parietal cortex (PPC), suggesting an integrated cortical response to managing concurrent cognitive and motor demands. However, increased activation did not consistently translate to improved functional outcomes, highlighting the complex relationship between brain activation and rehabilitation success. Conclusions: DT interventions may enhance cortical activation and neuroplasticity in post-stroke patients, but the relationship between increased brain activity and functional recovery remains complex and requires further investigation. Tailored DT programs that consider individual neurophysiological and functional capacities are recommended to optimize rehabilitation outcomes.

신경가역성과 물리치료 (Neural Plasticity and Physical Therapy)

  • 김종만;권혁철
    • 대한물리치료과학회지
    • /
    • 제1권2호
    • /
    • pp.301-311
    • /
    • 1994
  • Most patients treated by physical therapists have suffered some neurological trauma resulting from disease or injury. The traditional teaching used to be that damage of central neurons is irreversible. However, it has been necessary to cast aside this traditional view because of accumulating evidence that the brain is endowed with remarkable plasticity. This paper reviews the literature relating to neuroplasticity within the brain and draws implications pertinent to physical therapy practice.

  • PDF

척수 손상 후 병변의 발달과 기능의 회복 (Lesion development and functional recovery after spinal cord injury)

  • 전경희;박래준
    • The Journal of Korean Physical Therapy
    • /
    • 제14권4호
    • /
    • pp.441-453
    • /
    • 2002
  • The purpose of this study was to characterize lesion development, neural plasticity, and motor learing after spinal cord injury. Facilitatory intervention such as weight bearing and locomotor training after SCI may be more effective than compensatory strategies at inducing neuroplasticity and motor recovery. Minimal tissue sparing has a profound impact on segmental systems and recovery of function Spinal animal could functional locomotion when subjected to repetitive stimulation. task-specific learning of isolated lumbar spinal could improve motor performance more then other task learning.

  • PDF

Non-Invasive Neuromodulation for Tinnitus

  • Langguth, Berthold
    • 대한청각학회지
    • /
    • 제24권3호
    • /
    • pp.113-118
    • /
    • 2020
  • Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.

Non-Invasive Neuromodulation for Tinnitus

  • Langguth, Berthold
    • Journal of Audiology & Otology
    • /
    • 제24권3호
    • /
    • pp.113-118
    • /
    • 2020
  • Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.

우울증에서 자가소화작용의 역할 (The Role of Autophagy in Depression)

  • 서미경;박성우;석대현
    • 생명과학회지
    • /
    • 제32권10호
    • /
    • pp.812-820
    • /
    • 2022
  • 우울증은 우울한 기분, 무쾌감증, 피로 및 인지 기능 변화를 특징으로 하는 정신질환으로 일상 기능의 저하를 초래한다. 또한, 우울증은 개인의 삶뿐만 아니라 사회적으로도 심각하고 흔한 정신질환이므로 적극적인 치료가 필요하다. 자가소화작용은 정신질환의 병태생리학적 기전에 관여한다. 최근 연구에 따르면, 자가소화작용에 의한 세포사멸이 신경가소성에 영향을 주어 우울증을 유발하고, 항우울제가 자가소화작용을 조절한다고 알려져 있다. 자가소화작용은 용해소체를 통해 불필요한 세포소기관이나 단백질을 분해하고 제거하는 이화과정이다. 그리고, 세포의 항상성을 유지하는데 필수적이다. 자가소화작용은 스트레스 상황에서 활성화되며 우울증은 스트레스 관련 질병이다. 최근, 신경세포에서 자가소화작용 기전의 역할이 조사되고 있지만, 우울증의 자가소화작용은 완전히 연구되지 않았다. 이 리뷰에서 우울증의 병태생리학적 기전과 치료에 자가소화작용이 관여한다는 새로운 증거를 강조하고자 한다. 증거를 강조하기 위해 자가소화작용이 우울증과 관련되어 있음을 보여주는 임상 및 전임상 연구결과들을 소개한다. 우울증에 대한 자가소화작용의 관련성과 연구의 한계를 이해하는 것은 자가소화작용 조절이 항우울제 개발의 새로운 방향을 제공할 것으로 사료된다.

Effect Analysis of Virtual-reality Vestibular Rehabilitation based on Eye-tracking

  • Lee, Sungjin;Hong, Min;Kim, Sungyeup;Choi, Seong Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.826-840
    • /
    • 2020
  • Vertigo is one of the most common complaints encountered by physicians and the patients are steadily increasing. These patients are exposed to the risk of secondary accidents such as falls due to vertigo. There are two ways to improve this symptom: medication and rehabilitation. Although temporary symptomatic improvement may be expected in patients treated with medication, vertigo may recur and medication can delay central compensation. In contrast vestibular rehabilitation exploits central mechanisms of neuroplasticity to increase postural stability and enhance visual-vestibular interactions in situations that generate conflicting sensory information. However, vestibular rehabilitation may be compromised by incorrect performance of exercises, and there is a need for active effort and interest from the patient during rehabilitation. To solve these problems, we decided to apply FOVE HMD for eye-tracking and Unity3D to create virtual reality. The proposed eye-tracking based algorithm calculates the concentration of users with eye tracking data and calculates the motion width of the patient with nystagmus, thus the severity of the patient according to the score can be determined. According to our experimental test against healty group and patients group, this result showed the meaningful data to use define the contents result.

Brain plasticity and ginseng

  • Myoung-Sook Shin;YoungJoo Lee;Ik-Hyun Cho;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • 제48권3호
    • /
    • pp.286-297
    • /
    • 2024
  • Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.