• Title/Summary/Keyword: neuropeptides

Search Result 94, Processing Time 0.023 seconds

EFFECTS OF SUBSTANCE P ON COLLAGEN PRODUCTION IN HUMAN PERIODONTAL LIGAMENT CELLS (치주인대 세포의 교원질 생성에 대한 Substance P의 효과)

  • CHUN, Jun-Yeung;Choi, Je-Yong;Kyung, Hee-Moon;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.83-94
    • /
    • 1996
  • Substance P is one of the neuropeptide which presents highly in tension site of periodontal ligament during the orthodontic tooth movement. It has bnn also hon as one of the neuropeptides which cause neurogenic inflammation in various tissues and organs. However, there is no report about the effect of substance P on major extracellular matrix protein, collagen production. The purpose of this study was to evaluate the collagen production by substance P in human periodontal ligament cell. The collagenase-digestion method was used to evaluate collagen production and also used Northern blot hybridization for the evaluation of collagen mRNA level. This study also Included in terms of prostanglandins and gelatinase production with respect to collagen production. For the collagen degradation, zymography was used to estimate denatured collagen degradation. Dose-dependent effect of substance P on noncollagen protein, collagen, and percent collagen was that substance P increased noncollagen protein synthesis, but decreased collagen sytnsis. So the percent collagen, which determined by relative collagen production against total protein production, w3s decreased from $7\%\;to\;3.6\%$. This inhibitory effect of substance P on collagen production was disappeared when cells were treated concomitantly with indomethacin. It means that substance P-induced inhibitory effect on collagen production was due at least in part to the production of prostaglandins. To evaluate whether substance P-induced inhibitory effect on collagen production is correspond to the steady-state levels of procollagen mRNA, Northern blot hybridization was performed and it showed that substance P has no effect on the steady-slate level of ${\alpha}1(I)$ procollagen mRNA. It means that the inhibitory effect of substance P on collagen production was due to the change of a certain mechanism after posttranscription. In this context, gelatinase production by substance P in periodontal ligament cells was evaluated by zymography. Zymogram showed that substance P has no effect on gelatinase production in periodontal ligament cells. To explore wheter substance P-induced inhibitory effect on collagen production is selevtive in periodontal ligament cells or not, MC3T3-E1 cells which originated from mouse calvaria was used. It showed that substance P has no effect on collagen production in MC3T3-E1 cells. Taken together, substance P inhibits collagen production in human periodontal ligament cells. This effect was not due to the change of the steady-state level of procollagen mRNA and gelatinase production, but due at least in part to the change of prostaglandins production.

  • PDF

Effect of Hormones and Short Chain Fatty Acids on CYP7A1 Gene Expression in HepG2 Cell (호르몬과 단쇄지방산이 HepG2 Cell 내에서 CYP7A1 발현에 미치는 효과)

  • Yang, Jeong-Lye;Lee, Hyun-Jung;Kim, Yang-Ha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • Cholesterol $7\alpha-hydroxylase$ (CYP7A1) is the rate-limiting enzyme in the conversion of cholesterol to bile acids and plays a central role in regulating cholesterol homeostasis. We previously showed that a fermentable $\beta-glucan$ ingestion decreased plasma cholesterol levels due to fecal bile acid excretion elevation involved inincrease of cholesterol $7\alpha-hydroxylase$ mRNA expression and activity. It is proposed that short chain fatty acids (SCFA) produced by cecal and colonic fermentation of soluble fiber are associated with cholesterol-lowering effect of fiber. In the present study, we investigated whether CYP7A1 expression is up-regulated by short chain fatty acids or by hormones in cultured human hepatoma (HepG2) cells. Confluent HepG2 cell were incubated with acetate, propionate, or butyrate at 1 mM concentration for 24 hrs. Acetate as well as propionate increased to 1.8-fold expression of CYP7A1 mRNA than the control. Butyrate also increased 1.5-fold expression of CYP7A1 mRNA. Our data show for the first time that SCFA increase expression of CYP7A1 mRNA. Adding insulin, dexamethasone and triiodothyronine $(1\;{\mu}M)$ to HepG2 cell increased the expression of CYP7A1 mRNA to $150\%,\;173\%,\;141\%$, respectively. These results suggest that SCFA produced by cecal fermentation stimulate enteric nervous system, in which secreted some neuropeptides may be responsible for change in cholesterol and bile acid metabolism. These findings suggest that SCFA are involved in lowering plasma cholesterol levels due to the up-regulation of CYP7A1 and bile acid synthesis.

The effect of neuropeptides on secretion of Interleukin-8(IL-8) (Interleukin-8 (IL-8) 분비에 미치는 neuropeptides의 영향에 관한 연구)

  • Kim, Kyung-Jun;Park, Sang-Hyuk;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.153-160
    • /
    • 2006
  • We investigated the secretion of Interleukin-8 (IL-8) from ginviva and periodontal ligament stimulated with Substance P (SP) and Calcitonin Gene-related Peptide (CGRP). Gingiva (GF), periodontal ligament (PDLF) and pu)p (PF) tissues were collected from extracted intact 3rd molars. Cultured cells were stimulated with different concentrations of SP for 4 hrs, and stimulated with SP, CGRP and Tumor Necrosis Factor-$\alpha$ (TNF-$\alpha$) for 8 hrs. Then RNase Protection Assay was carried out. ELISA was performed using supernatants of stimulated cells for quantitative analysis of IL-8. Results were assessed using student t-test with significance of P<0.05. According to this study, the results were as follows: 1. IL-8 mRNA was detected in all type of cells studied (PF, GF and PDLF) 2. IL-8 mRNA expression was not increased after stimulating 4 hrs with SP ($10^{-5}M$) and SP ($10^{-8}M$) compared with Mock stimulation in all type of cells studied. 3. IL-8 mRNA expression was not increased after stimulating 8 hrs with SP ($10^{-4}M$) and CGRP ($10^{-6}M$) compared with Mock stimulation in all type or cells studied. 4. TNF-$\alpha$ (2 ng/ml) increased the expression of IL-8 mRNA in all kind of cells studied. 5. The secretion of IL-8 from GF was increased 8 hrs after the stimulation with CGRP ($10^{-6}M$)(p<0.05). 6. The secretion of IL-8 from PDLF was. increased 8 hrs after the stimulation with SP ($10^{-4}M$)(p<0.05). Calcitonin Gene-related Peptide (CGRP) increased Interleukin-8 (IL-8) which plays an important role in chemotaxis of neutrophil in Calcitonin Gene-related Peptide (CGRP) gingival tissue , whereas Substance P increased the secretion of IL-8 from periodontal ligament.

The effect of tumor necrosis factor (TNF)-α to induce matrix metalloproteinase (MMPs) from the human dental pulp, gingival, and periodontal ligament cells (사람의 치수, 치은, 치주인대 세포에 tumor necrosis factor (TNF)-α로 자극 시 matrix metalloproteinase (MMPs)의 분비에 관한 연구)

  • Rhim, Eun-Mi;Park, Sang-Hyuk;Kim, Duck-Su;Kim, Sun-Young;Choi, Kyoung-Kyu;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2011
  • Objectives: In the present study, three kinds of tissues cells (pulp, gingiva, and periodontal ligament) were investigated if those cells express MMP and TIMP when they were stimulated with neuropeptides (substance P, CGRP) or proinflammatory cytokine, TNF-$\alpha$. Materials and Methods: The cells cultured from human dental pulp (PF), gingiva (GF) and periodontal ligament were (PDLF) stimulated with Mock, SP, TNF-$\alpha$, and CGRP for 24 hrs and 48 hrs. for an RNase protection assay and Enzyme Linked Immunosorbent Assay. Cells (PF, GF and PDLF) seeded in 100 mm culture dish were stimulated with SP ($10^{-5}$, $10^{-8}\;M$) or only with medium (Mock stimulation) for 4hrs and for 24 hrs for RNase Protection Assay, and they were stimulated with CGRP ($10^{-5}\;M$) and TNF-$\alpha$(2 ng/mL) for 24 hrs and with various concentraion of TNF-$\alpha$(2, 10, and 100 ng/mL) for Rnase Protection Assay with a human MMP-1 probe set including MMP 1, 2, 8, 7, 8, 9, 12, and TIMP 2, 3. In addition, cells (PF, GF and PDLF) were stimulated with Mock and various concentraion of TNF-$\alpha$(2, 10, and 100 ng/mL) for 24 hrs and with TNF-$\alpha$(10 ng/mL) for 48 hrs, and the supernatents from the cells were collected for Enzyme Linked Immunosorbent Assay (ELISA) for MMP-1 and MMP-13. Results: The expression of MMPs in PF, GF, PDLF after stimulation with SP and CGRP were not changed compared with Mock stimulation for 4 hrs and 24 hrs. The expression of MMP-1, -12, -13 24 hrs after stimulation with TNF-$\alpha$ were upregulated, however the expression of TIMP-3 in PF, GF, PDLF after stimulation with TNF-$\alpha$ were downregulated. TNF-$\alpha$(2 ng/mL, 10 ng/mL, 100 ng/mL) increased MMP-1 and MMP-12 expression in PF dose dependently for 24 hrs. Conclusions: TNF-$\alpha$ in the area of inflammation may play an important role in regulating the remodeling of dentin, cementum, and alveolar bone.