• 제목/요약/키워드: neurons cells

검색결과 725건 처리시간 0.026초

Immunocytochemical Localization of Glutamatergic Neurons in the Lateral Reticular Nucleus Projecting to Ansiform (Crus I and II) and Paramedian Cerebellar Lobules of the Rat

  • Lee, Hyun-Sook
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.139-144
    • /
    • 1998
  • I examined the projection of glutamatergic neurons in the lateral reticular nucleus into ansiform (crus l and ll) and paramedian lobules in the rat cerebellum using immunocytochemical methods with antiserum against glutamate combined with WGA-HRP histochemistry. The projections of glutamatergic neurons from the lateral reticular nucleus to crus l were most extensive in number among the three injection cases and the majority of projections originated at the dorsal to dorsomedial region of the ipsilateral magnocellular nucleus. Glutamate-immunoreactive cells projecting to crus ll were less extensive in number than those projecting to crus l and were mainly localized at the dorsomedial portion of the ipsilateral magnocellular nucleus. Double-labelled neurons projecting to crus l or crux ll were also located at ipsilateral subtrigeminal as well as contralateral magnocellular nuclei. Glutamatergic neurons projecting to paramedian lobules were moderate in number and mainly located at the dorsal area of the ipsilateral magnocellular nucleus. A few double-labelled cells were also found at ipsilateral subtrigeminal or contralateral magnocellular nuclei. The present study suggests that glutamate-immunoreactive neurons at the dorsal to dorsomedial magnocellular division of the lateral reticular nucleus may participate in the excitatory control of target neuronal activities at ipsilateral, posterior hemispheric lobules of the rat cerebellum.

  • PDF

Functional Characteristics of Lumbar Spinal Neurons Projecting to Midbrain Area in Rats

  • Park, Sah-Hoon;Kim, Geon
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.113-122
    • /
    • 1994
  • The present study was carried out to characterize the functional properties of spinomesencephalic tract (SMT) neurons in the lumbar spinal cord of urethane anesthetized rats. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of the midbrain area, including the deep layers of superior colliculus, periaqueductal gray and midbrain reticular formation. Recording sites were located in laminae I-VII of spinal cord segments of L2-L5. Receptive field properties and responses to calibrated mechanical stimulation were studied in 78 SMT cells. Mean conduction velocity of SMT neurons was $19.1{\pm}1.04\;m/sec$. SMT units were classified according to their response profiles into four groups: wide dynamic range (58%), deep/tap (23%), high threshold (9%) and low threshold (3%). A simple excitatory receptive field was found for most SMT neurons recorded in superficial dorsal horn (SDH). Large complex inhibitory and/or excitatory receptive fields were found for cells in lateral reticulated area which usually showed long after-discharge. Most of SMT cells received inputs from $A{\delta}$ and C afferent fiber types. These results suggest that sensory neurons in the rat SMT may have different functional roles according to their location in the spinal cord in integrating and processing sensory inputs including noxious mechanical stimuli.

  • PDF

Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons

  • Li, Hai Ying;Lee, Byung-Ky;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.315-321
    • /
    • 2008
  • Eugenol is widely used in dentistry to relieve pain. We have recently demonstrated voltage-gated $Na^+$ and $Ca^{2+}$ channels as molecular targets for its analgesic effects, and hypothesized that eugenol acts on $P2X_3$, another pain receptor expressed in trigeminal ganglion (TG), and tested the effects of eugenol by whole-cell patch clamp and $Ca^{2+}$ imaging techniques. In the present study, we investigated whether eugenol would modulate 5'-triphosphate (ATP)-induced currents in rat TG neurons and $P2X_3$-expressing human embryonic kidney (HEK) 293 cells. ATP-induced currents in TG neurons exhibited electrophysiological properties similar to those in HEK293 cells, and both ATP- and $\alpha$, $\beta$-meATP-induced currents in TG neurons were effectively blocked by TNP-ATP, suggesting that $P2X_3$ mediates the majority of ATP-induced currents in TG neurons. Eugenol inhibited ATP-induced currents in both capsaicin-sensitive and capsaicin-insensitive TG neurons with similar extent, and most ATP-responsive neurons were IB4-positive. Eugenol inhibited not only $Ca^{2+}$ transients evoked by $\alpha$, $\beta$-meATP, the selective $P2X_3$ agonist, in capsaicin-insensitive TG neurons, but also ATP-induced currents in $P2X_3$-expressing HEK293 cells without co-expression of transient receptor potential vanilloid 1 (TRPV1). We suggest, therefore, that eugenol inhibits $P2X_3$ currents in a TRPV1-independent manner, which contributes to its analgesic effect.

NEUROTOXICITY OF TRIMETHYLTIN IN HIPPOCAMPUS: A HYPEREXCITATORY TOXICITY

  • Chang, Louis W.
    • Toxicological Research
    • /
    • 제6권2호
    • /
    • pp.191-204
    • /
    • 1990
  • Trimethyltin (TMT) induced lesions in the rat hippocampal formation was reviewed. Adult rats were treated with a single dose of 6.0 mg TMT/kg b.w. and were sacrificed between 3-60 days following exposure. On the hippocampal formation, the granule cells of fascia dentata showed early changes which subsided considerably at a later time when the destruction of the pyramidal neurons of the Ammon's horn became increasingly pronounced with time, leading to severe destruction of the structure. It is interesting to note that there was an inverse relationship of pathological involvement between the f.d. granule cells and the Ammon's horn neurons; i.e., when there was a large sparing of the granule cells. there was an extensive damage to the Ammon's horn and vice versa. This inverse relationship was also true between the $CA_3$neurons and the $CA_{1,2}$neurons in the Ammon's horn. Progressive zinc loss, as demonstrated by Timm's method, on the Mossy fibers was also observed. Similar Mossy fiber zinc depletion has been demonstrated in electrical stimulatory excitation condition of the perforant path to the hippocampus. Depletion of corticosterone, an inhibitor to the hippocampal neurons, by means of adrenalectomy will exaggerate the TMT induced hippocampal lesion. Neonatal study revealed that a unique degenerative pattern of the Ammon's horn could be established in accordance with exposure to TMT at specific maturation periods of the fippocampal formation: increasing destruction of the Ammon's horn with increasing synaptogenesis between the f.d. granule cells and the Ammon's horn neurons. Thus it is apparent that the damage of the Ammon's horn, upon exposure to TMT, may depend on the integrity and functional state of the f.d. granule cells. A hyperexcitory scheme and mechanism as the toxicity basis of TMT in the hippocampal formation is proposed and discussed.

  • PDF

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong;Zhang, Xiao-Ya;Sun, Jing;Cong, Qi-Jie;Chen, Wei-Xiong;Ahsan, Hafiz Muhammad;Gao, Jing;Qian, Jin-Jun
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.442-449
    • /
    • 2019
  • This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.

Effects of a ${\delta}-opioid$ Agonist on the Brainstem Vestibular Nuclear Neuronal Activity of Rats

  • Kim, Tae-Sun;Huang, Mei;Jang, Myung-Joo;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권3호
    • /
    • pp.137-141
    • /
    • 2005
  • This study was undertaken to investigate the effects of [$D-Ala^2$, D-Leu^5$]-enkephalin (DADLE) on the spontaneous activity of medial vestibular nuclear neurons of the rat. Sprague-Dawley rats, aged 14 to 16 days, were anesthetized with ether and decapitated. After enzymatic digestion, the brain stem portion of medial vestibular nuclear neuron was obtained by micropunching. The dissociated neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. The spontaneous action potentials were increased by DADLE in 12 cells and decreased in 3 cells. The spike frequency and resting membrane potential of these cells were increased by DADLE. The depth of afterhyperpolarization was not affected by DADLE. The potassium currents were decreased in 20 cells and increased in 5 cells. These results suggest that DADLE increases the neuronal activity of the medial vestibular nuclear neurons by altering resting membrane potential.

Discharge Patterns and Peripheral Nerve Inputs to Cardiovascular Neurons in the Medulla of Cats: Comparison between the lateral and medial medulla

  • Kim, Sang-Jeong;Lim, Won-Il;Park, Myoung-Kyu;Lee, Jin;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.133-141
    • /
    • 1994
  • The discharge patterns and peripheral nerve inputs to cardiovascular neurons were investigated in rostral ventrolateral medulla (RVLM) and raphe nucleus of cats. The data from the two were compared to determine their roles in cardiovascular regulation and the endogenous analgesic system. Animals were anesthetized with ${\alpha}-chloralose$ and single cell activities were recorded by carbon-filament microelectrode and their relationships with cardiovascular activity were analyzed. In RVLM area, a total of thirty-three cells were identified as cardiovascular neurons. During one cardiac cycle, the mean discharge rate of the neurons was $1.96{\pm}0.29$ and the peak activity was observed 45 ms after the systolic peak of arterial blood pressure. Thirteen cells could be activated antidromically by stimulation of the the $T_2$ intermediolateral nucleus. Forty-three raphe neurons were identified as cardiovascular neurons whose mean discharge rate during one cardiac cycle was $1.02{\pm}0.12$. None of these cells could be activated antidromically. Study of the interval time histogram of RVLM neurons revealed that the time to the first peak was $128{\pm}20.0\;ms$, being shorter than the period of a cardiac cycle. The same parameter found from the raphe neurons was $481{\pm}67.2\;ms$, which was much longer than the cardiac cycle length. Of seventeen RVLM neurons examined ten received only the peripheral $A{\delta}-afferent$ inputs, whereas six RVLM neurons received both $A{\delta}-$ and C-inputs; the remaining one cell received an inhibitory peripheral C-input. In contrast, nine of eleven raphe neurons were found to receive $A{\delta}-inputs$ only. We conclude that the main output of cardiovascular regulatory influences are mediated through the RVLM neurons. The cardiovascular neurons in the raphe nucleus appear to serve as interneurons transferring cardiovascular afferent information to the raphespinal neurons mediating the endogenous analgesic mechanisms.

  • PDF

Ox retina내 tyrosine - hydroxylase 면역 반응되는 dopaminergic neuron에 대하여 (Tyrosine Hydroxylase - Immunoreactive Dopaminergic Neurons in the OX Retina)

  • 김인숙;김진숙;전영기;전창진
    • 한국안광학회지
    • /
    • 제5권2호
    • /
    • pp.15-20
    • /
    • 2000
  • 성체 소의 망막에 존재하는 doparminergic 신경세포의 형태를 연구하였다. Dopaminerglc 세포는 항체면역세포화학적 방법을 이용하여 확인하였다. Tyrosine hydroxylase 면역 반응 신경 세포의 대부분은 내핵층의 가장 깊은 부분에 위치했다. 이들 세포들의 돌기들은 단층이었으며 그리고 내망상층의 1층내에 위치했다. Tyrosine-hydroxylase 면역 반응되는 두 번째 주요 세포 집단은 치환된 amacrine 세포들이다. 치환된 tyrosine-hydroxylase 면역 반응 amacrine 세포의 돌기들도 역시 내망상층의 1층내에 나타났다. 소수의 신경 세포의 돌기들은 외망상층에서 나타났다. 매우 낮은 밀도의 신경세포들은 내망상층의 중간과 깊은 층에서 tyrosine-hydroxylase 면역 반응 돌기들의 추가적인 층을 가졌다. Doparminergic 신경세포의 돌기들은 방사선형으로 넓게 신장되어 큰 모양을 형성하였고 수상돌기의 가지들은 적당하게 뻗어 있었다. 이러한 돌기들은 때때로 varicosity를 가지지만 "dendritic rings"을 형성하지는 않았다. 본연구의 결과는 doparminergic 세포는 소의 망막내 특이 신경세포 형태를 구성하는 것을 알 수 있었다.

  • PDF

Neurogenesis and neuronal migration of dopaminergic neurons during mesencephalon development in mice

  • Kim, Mun-ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chungkil
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.125-129
    • /
    • 2018
  • Dopaminergic neurons are one of the major neuronal components in the brain. Mesencephalon dopamine (DA) neurogenesis takes place in the ventricular zone of the floor plate, when DA progenitors divide to generate postmitotic cells. These cells migrate through the intermediate zone while they differentiate and become DA neurons on reaching the mantle zone. However, neurogenesis and neuronal migration on dopaminergic neurons remain largely unexplored in the mesencephalon development. This study presents neurogenesis and neuronal migration patterns of dopaminergic neurons during mesencephalic development of the mouse. Neurons from embryonic day (E) 10-14 were labelled by a single injection of 5-bromodeoxyuridine and immunohistochemistry was performed. The neurogenesis occurred mainly at the E10 and E11, which was uniformly distributed in the mesencephalic region, but neurons after E13 were observed only in the dorsal mesencephalon. At the postnatal day 0 (P0), E10 generated neurons were spread out uniformly in the whole mesencephalon whereas E11-originated neurons were clearly depleted in the red nucleus region. DA neurons mainly originated in the ventromedial mesencephalon at the early embryonic stage especially E10 to E11. DA neurons after E12 were only observed in the ventral mesencephalon. At E17, E10 labelled neurons were only observed in the substantia nigra (SN) region. Our study demonstrated that major neurogenesis occurred at E10 and E11. However, neuronal migration continued until neonatal period during mesencephalic development.