• Title/Summary/Keyword: neurons cells

Search Result 737, Processing Time 0.034 seconds

Finding Complex Features by Independent Component Analysis (독립성분 분석에 의한 복합특징 형성)

  • 오상훈
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.19-23
    • /
    • 2003
  • Neurons in the mammalian visual cortex can be dassified into the two main categories of simple cells and complex cells based on their response properties. Here, we find the complex features corresponding to the response of complex cells by applying the unsupervised independent component analysis network to input images. This result will be helpful to elucidate the information processing mechanism of neurons in primary visual cortex.

  • PDF

Repeated restraint stress promotes hippocampal neuronal cell ciliogenesis and proliferation in mice

  • Lee, Kyounghye;Ko, Hyuk Wan
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.203-210
    • /
    • 2018
  • Stress severely disturbs physiological and mental homeostasis which includes adult neurogenesis in hippocampus. Neurogenesis in hippocampus is a key feature to adapt to environmental changes and highly regulated by multiple cellular signaling pathways. The primary cilium is a cellular organelle, which acts as a signaling center during development and neurogenesis in adult mice. However, it is not clear how the primary cilia are involved in the process of restraint (RST) stress response. Using a mouse model, we examined the role of primary cilia in repeated and acute RST stress response. Interestingly, RST stress increased the number of ciliated cells in the adult hippocampal dentate gyrus (DG). In our RST model, cell proliferation in the DG also increased in a time-dependent manner. Moreover, the analysis of ciliated cells in the hippocampal DG with cell type markers indicated that cells that were ciliated in response to acute RST stress are neurons. Taken together, these findings suggest that RST stress response is closely associated with an increase in the number of ciliated neurons and leads to an increase in cell proliferation.

Reduced Cytotoxicity by Repetitive mRNA Transfection in Differentiated Neurons

  • Seung Hwan Ko;Jin Sun Kang;Sang-Mi Kim;Eun-Hye Lee;Chang-Hwan Park
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.117-122
    • /
    • 2023
  • Background and Objectives: mRNA-based protein expression technology has been used to express functional proteins. We have previously generated dopamine neurons from rat-embryo derived neural precursor cells (NPCs) through repeated transfection of synthetic transcription factor mRNA encoding dopamine-inducible genes. However, NPCs began to die approximately 10 d post-transfection. In this study, we examined a long-term transfection protocol that did not affect cell viability. Methods and Results: Experiments were performed in eight groups sorted according to the start date of mRNA transfection. mRNA was transfected into NPCs daily for 21 d and live cell images of each group were recorded. NPCs which were differentiated for more than five days showed sustained gene expression and appreciable viability despite daily mRNA transfection for 21 d. Conclusions: Repeated mRNA transfection requires cells with a sufficient differentiation period.

Olig2 Transcription Factor in the Developing and Injured Forebrain; Cell Lineage and Glial Development

  • Ono, Katsuhiko;Takebayashi, Hirohide;Ikenaka, Kazuhiro
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.397-401
    • /
    • 2009
  • Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.

The Protective Effect of Chunghyul-dan(Qingxuedan) Against 6-hydroxydopamine Induced Neurotoxicity. (청혈단(淸血丹)의 6-hydroxydopamine에 의해 유발된 독성에 대한 신경세포보호효과)

  • Kim, Gwang-Ho;Kim, Jong-Woo;Chung, Sun-Yong;Cho, Sung-Hoon;Oh, Myun-Sook;Hwang, Wei-wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • Objectives : This Study was performed to assess the antioxidant and neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells and primary rat mesencephalic dopaminergic neurons. Methods : The anioxidant effect was investigated using the DPPH radical and ABTS cation scavenging assays and total polyphenol amout of Chunghyul-dan(Qingxuedan). The neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells was evaluated using MTT assay. The scavenging activity of Chunghyul-dan(Qingxuedan) on ROS production induced by 6-OHDA(6-hydroxydopamine) in PC12 cells was evaluated, as well as the attenuating effect on GSH reduction. Finally, we examined the neuroprotective effect of Chunghyul-dan(Qingxuedan) against 6-0HDA-induced toxicity in the primary culture of rat mesencephalic doperminergic neurons. Results : Chunghyul-dan(Qingxuedan) showed concentration-dependent scavenging activities in DPPH radical and ABTS cation scavenging assays and it was not cytotoxic to PC12 cells. In postand co-treatment, Chunghyul-dan(Qingxuedan) protected PC12 cells from the 6-OHDA induced toxicity at 50 and 100 ${\mu}$g/mL significantly. And Chunghyu!-dan(Qingxuedan) decreased the 6-OHDA induced ROS production at a dose dependent manner, while increaing the 6-OHDA induced GSH reduction at 50 and 100 ${\mu}$g/mL significantly. Finally, Chunghyul-dan(Qingxuedan) showed signicant protection of rat mescencephalic dopaminergic neurons from 6-OHDA at 1 ${\mu}$g/mL. Conclusions : These results demonstrate that Chunghyul-dan(Qingxuedan) has the antioxidant and neuroprotective effect against 6-0HDA induced cytotoxicity through decreasing ROS production and increasing GSH reduction.

  • PDF

Leucine-rich Repeat Kinase 2 (LRRK2) Phosphorylates Rab10 in Glia and Neurons

  • Ho, Dong Hwan;Nam, Daleum;Seo, Mi Kyoung;Park, Sung Woo;Son, Ilhong;Seol, Wongi
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). LRRK2 contains a functional kinase and GTPase domains. A pathogenic G2019S mutation that is the most prevalent among the LRRK2 mutations and is also found in sporadic cases, increases its kinase activity. Therefore, identification of LRRK2 kinase substrates and the development of kinase inhibitors are under intensive investigation to find PD therapeutics. Several recent studies have suggested members of Rab proteins, a branch of the GTPase superfamily, as LRRK2 kinase substrates. Rab proteins are key regulators of cellular vesicle trafficking. Among more than 60 members of human Rab proteins, Rab3, Rab5, Rab8, Rab10, Rab12, Rab29, Rab35, and Rab43 have been identified as LRRK2 kinase substrates. However, most studies have used human embryonic kidney (HEK) 293T cells overexpressing LRRK2/Rab proteins or murine embryonic fibroblast (MEF) cells which are not relevant to PD, rather than neuronal cells. In this study, we tested whether Rab proteins are phosphorylated by LRRK2 in astroglia in addition to neurons. Among the various Rab substrates, we tested phosphorylation of Rab10, because of the commercial availability and credibility of the phospho-Rab10 (pRab10) antibody, in combination with a specific LRRK2 kinase inhibitor. Based on the results of specific LRRK2 kinase inhibitor treatment, we concluded that LRRK2 phosphorylates Rab10 in the tested brain cells such as primary neurons, astrocytes and BV2 microglial cells.

Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion

  • Young Hyun Che;In Young Choi;Chan Eui Song;Chulsoo Park;Seung Kwon Lim;Jeong Hee Kim;Su Haeng Sung;Jae Hoon Park;Sun Lee;Yong Jun Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.269-280
    • /
    • 2023
  • Background and Objectives: The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results: Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions: Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.

Distribution of the neuropeptide Y immunoreactive neurons in the olfactory bulb of striped field mouse(Apodemus agrarius) (야생등줄쥐(Apodemus agrarius) 후각망울의 neuropeptide Y 면역반응세포의 분포)

  • Jeong, Young-gil;Kim, Kil-soo;Jung, Ju-young;Lee, Nam-seob;Lee, Kyeng-youl;Kim, Moo-kang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.407-416
    • /
    • 1999
  • This study was carried out to investigate the NPY-immunohistochemical characteristics of the olfactory bulb in the striped field mouse(Apodemus agrarius). The animals were anesthesized with thiopental sodium and perfused with 4% paraformaldehyde through left ventricle and aorta. Brains were removed and tranfered 10%, 20% and 30% sucrose. Sections were then cut on a cryostat into $40{\mu}m$-thick. The tissue immunostained with avidin-biotinylated complex method. The main olfactory bulb consisted of seven circumferential laminae : an olfactory nerve fiber layer, a glomerular layer with glomeruli surrounding by periglomerular cells, an external plexiform layer having granule and tufted cells, a mitral cell layer, a narrow internal plexiform layer, a granule cell layer forming several cell rows and a layer of white matter. The accessory olfactory bulb had four layers : an olfactory or vomeronasal nerve fiber layer, a glomerular layer consisting of small glomeruli, a mixed layer not distinguishing the external plexiform/mitral cell/granule cell layers and a granule cell layer. Most of NPY-immunoreactive(NPY-IR) neurons in main olfactory bulb were localized in the deeper portion of granule cell layer, white matter and anterior olfactory nucleus. In addition, some NPY-IR neurons were identified in the external plexiform layer. The shape of NPY-IR neurons of all olfactory bulb were predominant round or oval, sometime multipolar in shape. And most NPY-IR processes were parallel to long axis of white matter. In accessory olfactory bulb, NPY-IR neurons were not found in all region.

  • PDF

Effect of Synthetic CaM and NFAT Oligodeoxynucleotide on MPP+-Stimulated Mesencephalic Neurons

  • Jihyun Park;Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.35-41
    • /
    • 2023
  • Background: Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis in Parkinson's disease (PD). Overexpression of αSYN significantly promote the Ca2+-Calmodulin (CaM) activity and subsequent nuclear translocation of nuclear factor of activated T cells (NFAT) transcription factor in dopaminergic neurons of midbrain. However, the exact role of Ca2+-CaM and NFAT in PD pathology is yet to be elucidated. Methods: We designed the CaM-NFAT-oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for NFAT transcription factor and CaM mRNA. Then, the effect of CaM-NFAT-ODN on 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity was investigated in mimic PD model in vitro. Results: First, the expression of αSYN and CaM was strongly increased in substantia nigra (SN) of PD and the expression of tyrosine hydroxylase (TH) was strongly increased in control SN. Additionally, the expression of apoptosis marker proteins was strongly increased in SN of PD. Transfection of CaM-NFAT-ODN repressed CaM and pNFAT, the target genes of this ODN in rat embryo primary mesencephalic neurons. It also reduced ERK phosphorylation, a downstream target of these genes. These results demonstrated that CaM-NFAT-ODN operated successfully in rat embryo primary mesencephalic neurons. Transfection of CaM-NFAT-ODN repressed TH reduction, αSYN accumulation, and apoptosis by MPP+-induced neurotoxicity response through Ca2+ signaling and mitogen-activated protein kinases (MAPK) signaling. Conclusion: Synthetic CaM-NFAT-ODN has substantial therapeutic feasibility for the treatment of neurodegenerative diseases.