• Title/Summary/Keyword: neuronal modulation

Search Result 87, Processing Time 0.061 seconds

Glutamate-induced Modulation of $Ca^{2+}$/Calmodulin-dependent Protein Kinase IV in Cultured Rat Cortical Neurons (배양 대뇌피질 신경세포에서 glutamate에 의한 $Ca^{2+}$/calmodulin-dependent protein kinase IV의 활성변화)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.419-425
    • /
    • 2001
  • The neuronal cell death induced by excess glutamate (Glu) has been implicated in many acute and chronic neurodegenerative diseases including cerebral ischemia. Glu-induced elevation of intra-cellular $Ca^{2+}$ plays a critical role in the excitotoxicity, partly through the activation of a variety of $Ca^{2+}$ dependent enzymes. In the present study, we investigated the Glu-induced modulation of $Ca^{2+}$/calmodulin-dependent protein kinase IV (CaMK IV), a multifunctional enzyme abundantly present in the nuclei of neurons. The exposure of cultured rat cortical neurons to $100{\mu}$M Glu for 3 min dramatically increased CaMK IV activity up to 4.5-fold of the control-treated enzyme activity. The activation was very rapid, reaching peak at 3 min and then declined gradually. Under the same experimental conditions, time-dependent acute and delayed neuronal cell death was observed. Immunoblot analyses using specific antibodies showed that the expressions of CaMK IV and $CaMKK_{\alpha}$ were time-dependently modulated by Glu. Taken together, these results imply that the modulation of CaMK IV activity by Glu may be involved in the cascade of events resulting in neuronal cell death in cortical cultures.

  • PDF

Morphine-induced Modulation of Nociceptive Spinal Dorsal Horn Neuronal Activities after Formalin-induced Inflammatory Pain

  • Park, Joo-Min;Li, Kang-Wu;Jung, Sung-Jin;Kim, Jun;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2005
  • In this study, we examined the morphine-induced modulation of the nociceptive spinal dorsal horn neuronal activities before and after formalin-induced inflammatory pain. Intradermal injection of formalin induced time-dependent changes in the spontaneous activity of nociceptive dorsal horn neurons. In naive cats before the injection of formalin, iontophoretically applied morphine attenuated the naturally and electrically evoked neuronal responses of dorsal horn neurons. However, neuronal responses after the formalin-induced inflammation were significantly increased by morphine. Bicuculline, $GABA_A$ antagonist, increased the naturally and electrically evoked neuronal responses of dorsal horn neurons. This increase in neuronal responses due to bicuculline after the formalin-induced inflammation was larger than that in the naive state, suggesting that basal $GABA_A$ tone increased after the formalin injection. Muscimol, $GABA_A$ agonist, reduced the neuronal responses before the treatment with formalin, but not after formalin treatment, again indicating an increase in the GABAergic basal tone after the formalin injection which saturated the neuronal responses to GABA agonist. Morphine-induced increase in the spinal nociceptive responses after formalin treatment was inhibited by co-application of muscimol. These data suggest that formalin-induced inflammation increases $GABA_A$ basal tone and the inhibition of this augmented $GABA_A$ basal tone by morphine results in a paradoxical morphineinduced increase in the spinal nociceptive neuronal responses after the formalin-induced inflammation.

Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells

  • Yeon, Jeong-Ah;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.24-31
    • /
    • 2010
  • Taurine, 2-aminoethanesulfonic acid, is an abundant free amino acid present in brain cells and exerts many important biological functions such as anti-convulsant, modulation of neuronal excitability, regulation of learning and memory, anti-aggressiveness and anti-alcoholic effects. In the present study, we investigated to explore whether taurine has any protective actions against oxidative stress-induced damages in neuronal cells. ERK I/II regulates signaling pathways involved in nitric oxide (NO) and reactive oxygen species (ROS) production and plays a role in the regulation of cell growth, and apoptosis. We have found that taurine significantly inhibited AMPA induced cortical depolarization in the Grease Gap assays using rat cortical slices. Taurine also inhibited AMPA-induced neuronal cell damage in MTT assays in the differentiated SH-SY5Y cells. When the neuronal cells were treated with $H_2O_2$, levels of NO were increased; however, taurine pretreatment decreased the NO production induced by $H_2O_2$ to approximately normal levels. Interestingly, taurine treatment stimulated ERK I/II activity in the presence of AMPA or $H_2O_2$, suggesting the potential role of ERK I/II in the neuroprotection of taurine. Taken together, taurine has significant neuroprotective actions against AMPA or $H_2O_2$ induced damages in neuronal cells, possibly via activation of ERK I/II.

The Centrifugal Influence on Gustatory Neurons in the Nucleus of the Solitary Tract

  • Cho, Young Kyung
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.161-166
    • /
    • 2015
  • Neuronal activities of taste-responsive cells in the nucleus of the solitary tract (NST) are affected by various physiological factors, such as blood glucose level or sodium imbalance. These phenomena suggest that NST taste neurons are under the influence of neural substrates that regulate nutritional homeostasis. In this study, we reviewed a series of in vivo electrophysiological investigations that demonstrate that forebrain nuclei, such as the lateral hypothalamus or central nucleus of the amygdala, send descending projections and modulate neuronal activity of gustatory neurons in the NST. These centrifugal modulations may mediate plasticity of taste response in the NST under different physiological conditions.

Neuronal injury in AIDS dementia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species

  • Lipton, Stuart A.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.19-29
    • /
    • 1996
  • The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the vitus\ulcorner In vitro experiments from several different laboratiories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO - and O$_2$), glutamate, quinolinate, cysteine, cytokines (TNF-${\alpha}$, IL1-B, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for newonal suscepubility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca$\^$2+/ leading to neuronal damage, and thus offers hope for future pharmacological intervention. This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin; (ⅰ) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (piysiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function. (ⅱ) Niuoglycerin acts at a redox modulatory site of the NMDA receptor/complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by n chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of chinical value. To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cysteine residues on the NMDARI subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because <1 mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

  • PDF

Improvement of Neuronal Differentiation by PDE4 Inhibition in Human Bone Marrow-mesenchymal Stem Cells (인간 골수유래-중간엽 줄기세포(hBM-MSCs)에서 PDE4 억제조절을 통한 신경세포 분화 효율 개선)

  • Jeong, Da Hee;Joe, I-Seul;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1355-1359
    • /
    • 2016
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) can differentiate into various cell types including osteoblasts, adipocytes, chondrocytes, and myocytes. Previous studies, including our own, have shown that MSCs can also differentiate into neuron-like cells. However, their rate of neuronal differentiation is not sufficient for application to stem cell therapy, which requires well-defined cell types. For this purpose, we first examined the expression of neuronal lineage markers (GFAP, MAP-2, KCNH1, Nestin, NF-M, and Tuj-1) by real-time PCR, western blot, and immunocytochemical staining. The expressions of the astrocyte marker GFAP and neuronal markers NF-M and Tuj-1 increased in neuronal differentiated MSCs (dMSCs). To improve the neuronal differentiation efficiency, PDE4, an important signaling intermediator in the progression of neuronal differentiation, was modulated using well-known inhibitors such as rolipram or resveratrol and then differentiated into neuronal cells (Roli- or RSV-dMSCs). The expressions of NF-M, Tuj-1 were increased while that of GFAP decreased in Roli- and RSV-dMSCs, which were examined by real-time PCR, western blot, and immunocytochemical staining. From these experiments, we have found that the neuronal differentiation efficiency can be ameliorated by the modulation of PDE4 activity.

Photoperiodic modulation of insect circadian rhythms

  • Tomioka, Kenji;Uwozumi, Kouzo;Koga, Mika
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.9-12
    • /
    • 2002
  • Circadian rhythms can be seen in a variety of physiological functions in insects. Light is a powerful zeitgeber not only synchronizing but also modulating the rhythm to adjust insect's temporal structure to seasonal changes in the environmental cycle. There are two general effects of the length of light phase within 24 hr light cycles on the circadian rhythms, i.e., the modulation of free-running period and the waveform. Since the photoperiodic modulation of the free-running period is induced even in the clock mutant flies, per$\^$s/, the free-running period is not fully determined genetically. In crickets, the ratio of activity (a) and rest phase (p) under the constant darkness (DD) is clearly dependent on the photoperiod under which they have been kept. When experienced the longer photoperiod it becomes smaller. The magnitude of change in a/p-ratio is dependent on the number of cycles they experienced. The neuronal activity of the optic lobe in DD shows the a/p-ratio changing with the preceding photoperiod. These data suggest that a single circadian pacemaker stores and maintains the photoperiodic information and that there is a system that accumulates the effects of single photoperiod to cause greater effects.

  • PDF