• Title/Summary/Keyword: neuronal gene

Search Result 198, Processing Time 0.031 seconds

Prenatal diagnosis of the spinal muscular atrophy type I using genetic information from archival slides and paraffin-embedded tissues

  • Choi, Soo-Kyung;Cho, Eun-Hee;Kim, Jin-Woo;Park, So-Yeon;Kim, Young-Mi;Ryu, Hyun-Mee;Kang, Inn-Soo;Jun, Jung-Young;Chi, Je-G.
    • Journal of Genetic Medicine
    • /
    • v.2 no.2
    • /
    • pp.53-57
    • /
    • 1998
  • Spinal muscular atrophy (SMA) type I is a common severe autosomal recessive inherited neuromuscular disorder that has been mapped to chromosome 5q11.2-13.3. The survival motor neuron (SMN) gene, a candidate gene, is known to be deleted in 96% of patients with SMA type I. Presently, PCR and single strand conformation polymorphism (PCR-SSCP) analyses have been made possible for application to both archival slides and paraffin-embedded tissues. Archival materials represent valuable DNA resources for genetic diagnosis. We applied these methods for the identification of SMN gene of SMA type I in archival specimens for the prenatal diagnosis. In this study, we performed the prenatal diagnosis with chorionic villus sampling (CVS) cells on two women who had experienced neonatal death of SMA type I. DNA extraction was done from archival slide and tissue materials and PEP-PCR was performed using CVS cells. In order to identify common deletion region of SMN and neuronal apoptosis-inhibitory protein (NAIP) genes, cold PCR-SSCP and PCR-restriction site assay were carried out. Case 1 had deletions of the exons 7 and 8, and case 2 had exon 7 only on the telomeric SMN gene. Both cases were found to be normal on NAIP gene. These results were the same for both CVS and archival biopsied specimens. In both cases, the fetuses were, therefore, predicted to be at very high risk of being affected and the pregnancy were terminated. These data clearly demonstrate that archival slide and paraffin-embedded tissues can be a valuable source of DNA when the prenatal genetic diagnosis is needed in case any source for genetic analysis is not readily available due to previous death of the fetus or neonate.

  • PDF

Neuronal activity in the periaqueductal gray associated with chronic cannula implantation and microdialysis (Chronic cannula implantation 및 microdialysis가 periaqueductal gray내 신경세포 활성에 미치는 영향)

  • Lee, Jang-hern;Han, Ho-jae;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.720-729
    • /
    • 1998
  • Immunohistochemical technique of the c-fos primary gene protein, Fos, was used to analyze the effects of external factors on the neuronal activities in the periaqueductal gray(PAG) of the intact rats, sham-operated rats and post-operated stress control rats. In addition, the number of Fos positive neurons has been evaluated to verify the effects of cannula implantation and veratridine treatment on the neuronal activities in PAG area. The results were summerized as follow : 1. There was no significant difference in the number of Fos positive neurons observed in the caudal and middle portion of lateroventral PAG from cannula implanted rats and sham operated rats. 2. The number of Fos positive neurons in the PAG was not changed by the stress induced by connection of collecting tube to rats for 12 hours as compared to that of intact rats. 3. In the saline treated group, the Fos immunoreactivity in the PAG did not changed at 30 minutes and 1 hour after saline treatment as compared to that of intact rats. However, the number of Fos positive neurons was significantly increased at 2 hours after treatment compared to that of saline treated rats at 30 minutes after treatment. 4. The Fos immunoreactivity was dramatically increased at 30 minutes, 1 hour and 2 hours after veratridine treatment as compared to those of saline treated groups. The number of Fos immunoreative neurons showed the maximal level at 2 hours after veratridine treatment. 5. The Fos positive neurons induced by saline and veratridine treatment were mainly distributed in front of the microdialysis window. These results suggest that new microdialysis demonstrated in this study improves efficiency and accuracy to confine the neuronal activity in front of microdialysis window site. Moreover, this directional specificity allows us to locate probe tips adjacent to the brain area of the interest site rather than centering the probes within that brain area. Finally, This microdialysis method can be used to dialyse the neurotransmitters using concious and freely moving rats.

  • PDF

The effect on gene expression profile of rat hippocampus caused by administration of memory enhancing herbal extract (육미지황탕가미방(六味地黃湯加味方)이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi, Bo-Eop
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.109-126
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwangtang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by hehavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed $({\sim}100%)$, whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidy lethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK 108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

  • PDF

Analysis of Gene Expression in Mouse Spinal Cord-derived Neural Precursor Cells During Neuronal Differentiation

  • Ahn, Joon-Ik;Kim, So-Young;Ko, Moon-Jeong;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.85-96
    • /
    • 2009
  • The differentiation of neural precursor cells (NPCs) into neurons and astrocytes is a process that is tightly controlled by complicated and ill-defined gene networks. To extend our knowledge to gene networks, we performed a temporal analysis of gene expression during the differentiation (2, 4, and 8 days) of spinal cord-derived NPCs using oligonucleotide microarray technology. Out of 32,996 genes analyzed, 1878 exhibited significant changes in expression level (fold change>2, p<0.05) at least once throughout the differentiation process. These 1878 genes were classified into 12 groups by k-means clustering, based on their expression patterns. K-means clustering analysis revealed that the genes involved in astrogenesis were categorized into the clusters containing constantly upregulated genes, whereas the genes involved in neurogenesis were grouped to the cluster showing a sudden decrease in gene expression on Day 8. Functional analysis of the differentially expressed genes indicated the enrichment of genes for Pax6- NeuroD signaling.TGFb-SMAD and BMP-SMAD.which suggest the implication of these genes in the differentiation of NPCs and, in particular, key roles for Nova1 and TGFBR1 in the neurogenesis/astrogenesis of mouse spinal cord.

Transgenic Mice Overexpressing Cocaine-Amphetamine Regulated Transcript in the Brain and Spinal Cord (뇌와 척수에서 Cocaine-Amphetamine Regulated Transcript를 과발현하는 형질전환 생쥐)

  • Choi, S.H.;Lee, J.W.;Park, H.D.;Jahng, J.W.;Chung, K.S.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.389-397
    • /
    • 2001
  • Cocaine-amphetamine regulated transcript (CART), a satiety factor regulated by leptin, is associated with food intake and motor behavior. In knock out studies, Leu34Phe mutation of human CART gene resulted in obese phenotype but mice carrying a targeted deletion of the CART gene exhibited no dramatic increase of body weight on normal fat diet. To establish a new transgenic mouse model for determining the function of CART on feeding behavior in vivo, we constructed the fusion gene, CART gene under the control of neurofilament light chain promoter, which regulates gene expression at the stage of neuronal differentiation. Transgenic mice were generated by microinjection method and screened by PCR and Southern blot analyses. In these transgenic mice, overexpression of CART was detected by in situ hybridization in spinal cords and brains at 13.5 days post-coitum embryos. At six weeks of age, RT-PCR analysis showed that exogenous CART mRNA was expressed strongly in brains and spinal cords, but not much in other tissues. Our results suggest that these transgenic mice provide a new model to investigate the function of CART gene in neuronal network associated with feeding behavior.

  • PDF

Autocrine Regulation of Gonadotropin-releasing Hormone (GnRH) Operates at Multiple Control levels of GnRH Gene Expression in GT1-1 Neuronal Cells

  • Jin Han;Sehyung Cho;Woong Sun;Kyungjin Kim
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.483-488
    • /
    • 1998
  • We previously found that a potent gonadotropin-releasing hormone (GnRH) agonist, buserelin, decreases GnRH promoter activity together with GnRH mRNA level, providing evidence for an autoregulatory mechanism operating at the level of GnRH gene transcription in immortalized GT1-1 neuronal cells. To examine whether agonist-induced decrease in GnRH mRNA level requires the continuous presence of buserelin, we performed a pulse-chase experiment of buserelin treatment. Short-term exposure (15 min) of GT1-1 neuronal cells to buserelin ($10{\mu}M$) was able to decrease GnRH mRNA levels when determined 24 h later. When GT1-1 cells were treated with buserelin ( $10{\mu}M$) for 30 min and then incubated for 1, 3, 6, 12, 24, and 48 h after buserelin removal, a significant decrease in GnRH mRNA levels was observed after the 12 h incubation period. These data indicate that inhibitory signaling upon buserelin treatment may occur rapidly, but requires a long time (at least 12 h) to significantly decrease the GnRH mRNA level. To examine the possible involvement of de novo synthesis and/or mRNA stability in buserelin-induced decrease in GnRH gene expression, actinomycin D ($5{\mu}m/ml$), a potent RNA synthesis blocker, was co-treated with buserelin. Actinomycin D alone failed to alter basal GnRH mRNA Revel, but blocked the buserelin-induced decrease in GnRH mRNA level at 12 h of post-treatment. These data suggest that buserelin may exert its inhibitory action by altering the stability of GnRH mRNA. Moreover, a polvsomal RNA separation by sucrose gradient centrifugation demonstrated that buserelin decreased the translational efficiency of the transcribed GnRH mRNA. Taken together, these results clearly indicate that GnRH agonist buserelin acts as an inhibitory signal at multiple levels such as transcription mRNA stability, and translation.

  • PDF

ROLE OF DCC(DELETED IN COLORECTAL CANCER) GENE IN ORAL SQUAMOUS CELL CARCINOMA (구강편평상피암종에서 DCC 유전자의 역할)

  • Ko, Seong-Kyu;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.518-524
    • /
    • 2008
  • Chromosome 18q alteration plays a key role in colorectal tumorigenesis, and loss of heterozygosity at 18q is associated with a poor prognosis in colon cancer. DCC(Deleted in Colorectal Cancer) is a putative tumor- suppressor gene at 18q21 that encodes a transmembrane protein with structural similarity to neural cell adhesion molecule that is involved in both epithelial and neuronal cell differentiation. DCC is implicated in regulation of cell growth, survival and proliferation. Thus, tumor progression in squamous cell carcinoma, stomach cancer, colorectal cancer correlates with downregulation of DCC expression. The mechanism for DCC suppression is associated with hypermethylation of the DCC gene promoter region. Hence, the goal of this study is to identify the promoter methylation responsible for the down-regulation of DCC expression in oral squamous cell carcinoma. 12 of tissue specimens for the study are excised and gathered from 12 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find expression of DCC in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1. In the DCC gene RT-PCR analysis, 5(41.6%) of 12 specimens of oral squamous cell carcinoma did not expressed DCC gene. 2. In the promoter methylation specific PCR analysis, 5(41.6%) of 12 specimens showed promoter methylation of DCC gene. 3. In the immunohistochemical staining of poor differentiated and invasive oral squamous cell carcinoma, loss of DCC expression was observed. These findings suggest that methylation of the DCC gene may play a role in loss of gene expression in invasive oral squamous cell carcinoma.

Cyclic AMP response element binding (CREB) protein acts as a positive regulator of SOX3 gene expression in NT2/D1 cells

  • Kovacevic-Grujicic, Natasa;Mojsin, Marija;Popovic, Jelena;Petrovic, Isidora;Topalovic, Vladanka;Stevanovic, Milena
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.197-202
    • /
    • 2014
  • SOX3 is one of the earliest neural markers in vertebrates, playing the role in specifying neuronal fate. In this study we have established first functional link between CREB and human SOX3 gene which both have important roles in the nervous system throughout development and in the adulthood. Here we demonstrate both in vitro and in vivo that CREB binds to CRE half-site located -195 to -191 within the human SOX3 promoter. Overexpression studies with CREB or its dominant-negative inhibitor A-CREB indicate that this transcription factor acts as a positive regulator of basal SOX3 gene expression in NT2/D1 cells. This is further confirmed by mutational analysis where mutation of CREB binding site results in reduction of SOX3 promoter activity. Our results point at CREB as a positive regulator of SOX3 gene transcription in NT2/D1 cells, while its contribution to RA induction of SOX3 promoter is not prominent.

Nitric Oxide Synthase Expressions in ADR-induced Cardiomyopathy in Rats

  • Liu, Baogang;Li, Hongli;Qu, Hongyan;Sun, Baogui
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.759-765
    • /
    • 2006
  • In this study, we investigate Nitric oxide synthase (NOS) expressions in adriamycin (ADR)-induced cadiomyopathy in rats. Sixty male Wistar rats were randomly divided into two main groups: control and ADR groups. Myocardial histopathological observation was performed; Expressions of 3 isoforms of NOS genes were examined by RT-PCR analysis; Expressions of 3 isoforms of NOS protein was assessed by Western blot analysis. Myocardium exhibited intensive morphological changes after 8 weeks of ADR treatment. The expression levels of inducible NOS (iNOS) gene and protein were significantly increased in ADR-treated rats after 8 weeks of treatment and then slightly increased at weeks 9 and 10. No significantly difference of neuronal NOS (nNOS) or endothelial NOS (eNOS) gene and protein were observed in the myocardium obtained from the control rats and ADR-injected rats at any time point. iNOS gene expression is selectively induced by ADR in heart. The upregulation of iNOS gene and protein may be somehow correlated with morphological changes seen in heart of rat treated with ADR.

Neuropeptides and Neuroactive Substance in the Bembyx mori Brain: Allatotropin Gene and Localization, Neuronal Growth by BDNF, and Apoptosis by Edysone

  • Lee, Bong-Hee
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.13-18
    • /
    • 2003
  • Allatotropin is a 13-residue amidated neuropeptide isolated from pharate adult heads of the tobacco hornworm, Manduca serta and strongly stimulates biosynthesis of juvenile hormones in adults, but not larval, lepidopteran corpora allata. From a Bombyx mori midgut cDNA library, a cDNA that encodes a 130-amino-acid polypeptide containing M. sexta allatotropin sequence was isolated. The B. mori allatotropin cDNA consists of 1196 nucleotides. (omitted)

  • PDF