• Title/Summary/Keyword: neuronal apoptosis

Search Result 295, Processing Time 0.027 seconds

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

Ginsenoside Rg3 from Red Ginseng Prevents Damage of Neuronal Cells through the Phosphorylation of the Cell Survival Protein Akt

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Hwang, Kwang-Woo;Lee, Seon-Gu;Yoo, Yeong-Min;Lee, Do-Ik
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.244-247
    • /
    • 2006
  • Neuronal cell death significantly contributes to neuronal loss in neurological injury and disease. Typically, neuronal loss or destruction upon exposure to neurotoxins, oxidative stress, or DNA damage causes neurodegenerative diseases such as Alzheimer's disease. In this study, we attempted to determine whether ginsenoside Rg3 from red ginseng has a neuroprotective effect via an anti-apoptotic role induced by S-nitroso-N-acetylpenicillamine (SNAP) at the molecular level. We also investigated the antioxidant effect of Rg3 using a metal-catalyzed reaction with $Cu^{2+}/H_2O_2$. Our results showed that Rg3 ($40-100\;{\mu}g/mL$) protected SK-N-MC neuroblastoma cells under cytotoxic conditions and effectively protected DNA from fragmentation. In the signal pathway, caspase-3, and poly (ADP-ribose) polymerase (PARP) were kept at an inactivated status when pretreated with Rg3 in all ranges. In particular, the important upstream p-Akt signal pathway was increased in a dose-dependent manner, which indicates that Rg3 may contribute to cell survival. We also found that oxidative stress can be mitigated by Rg3. Therefore, we have concluded that Rg3 plays a certain role in neurodegenerative pathogenesis via an anti apoptotic, antioxidative effect.

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.

Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향)

  • Lee, Hwan-Sung;Park, Sung-Joon;Jung, Kwang-Sik;Sohn, Young-Joo;Jung, Hyuk-Sang;Park, Dong-Il;Sohn, Nak-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

Effects Amyloid Beta Peptide on the Inflammatory Response in Neuronal Cells (베타아밀로이드가 신경세포에 미치는 염증 작용 연구)

  • Jang, Seon-A;Koo, Hyun Jung;Kang, Se Chan;Sohn, Eun-Hwa;Namkoong, Seung
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.230-237
    • /
    • 2013
  • Amyloid ${\beta}$ peptide (A${\beta}$) still best known as a molecule to cause Alzheimer's disease (AD). AD is characterized by the accumulation and deposition of A${\beta}$ within the brain, leading to neuronal cell loss and perturbation of synaptic function by causing free radical formation, inflammation and apoptosis. We investigated the inflammatory action of A${\beta}$ on two types of brain cells, neuronal cells (SH-SY5Y) and neuroglia cells (C6), and its mechanism. We measured the production of NO-iNOS, TNF-${\alpha}$, and ICAM-1 using RT-PCR and Western blot analysis less than the concentration of cytotoxic effects (> 70% survivability). A${\beta}$ had no effect on the production of NO and TNF-${\alpha}$, but significantly increases of iNOS and ICAM-1. Based on this, we suggest that the inflammatory effect of A${\beta}$ results from the action of ICAM-1 in neuronal cells, rather than the release of inflammatory mediators such as NO and TNF-${\alpha}$ in neuroglia cells. In addition, we confirmed whether p53 was related to the action of A${\beta}$ by using SH-SY5Y ($p53^{-/-}$) dominant cells. Neither the expression of p53 nor the cytotoxicity of SH-SY5Y ($p53^{-/-}$) cells were directly affected by A${\beta}$. However, ICAM-1 was not expressed in SH-SY5Y ($p53^{-/-}$) cells. This means that p53- independent pathway exists in the expression of ICAM-1 by A${\beta}$ while p53 plays a role as an on-and-off switch.

Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells

  • Kim, Kkot Byeol;Lee, Seonah;Kim, Jung Hee
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.3-11
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).

Inhibition of Hypoxia-induced Apoptosis in PC12 Cells by Estradiol

  • Jung, Ji-Yeon;Roh, Kwang-Hoon;Jeong, Yeon-Jin;Kim, Sun-Hun;Lee, Eun-Ju;Kim, Min-Seok;Oh, Won-Mann;Oh, Hee-Kyun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.231-238
    • /
    • 2005
  • Neuronal apoptotic events, which result in cell death, are occurred in hypoxic/ischemic conditions. Estradiol is a female sex hormone with steroid structure known to provide neuroprotection through multiple mechanisms in the central nervous system. This study was aimed to investigate the signal transduction pathway of $CoCl_2$-induced neuronal cell death and the inhibitory effects of estradiol. Administration of $CoCl_2$ decreased cell viability in both a dose- and time-dependent manner in PC12 cells. $CoCl_2$-induced cell death produced genomic DNA fragmentation and morphologic changes such as cell shrinkage and condensed nuclei. It was found that $CoCl_2$-treated cells increased the reactive oxygen species (ROS) as well as caspase-8, -9 and -3 activities. However, pretreatment with estradiol before exposure to $CoCl_2$ prevented the reduction in cell viability reduction and attenuated DNA fragmentation and morphologic changes caused by $CoCl_2$. Furthermore, the $CoCl_2$-induced increases of ROS levels and caspases activities were attenuated by estradiol. Gene expression analysis revealed that estradiol blocked the underexpression of the Bcl-2 and ameliorated the increase in the release of cytochrome c from mitochondria into cytoplasm and Fas-ligand (Fas-L) upregulated by $CoCl_2$. These results suggest that $CoCl_2$ induce apoptosis in PC12 cells through both mitochondria- and death receptor-mediated cell death pathway. Estradiol was found to have a neuroprotective effect against $CoCl_2$-induced apoptosis through the inhibition of ROS production and by modulating apoptotic effectors associated with the mitochondria- and death-dependent pathway in PC12 cells.

Effects of Woohwangcheongsim-won on Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells (배양한 흰쥐 대뇌세포의 저산소증 모델에서 우황청심원이 유전자 표현에 미치는 영향)

  • Park Dong-Wan;Kim Wan-Sik;Bae Cheol-hwan;Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chul
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.123-136
    • /
    • 2004
  • Objectives : The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won (WC) on the in vitro neuronal development and alteration in gene expression in a hypoxia model using cultured rat cortical cells. Methods : E/sub 18/ rat cortical cells were grown in a neurobasal medium containing B27 supplement and various concentration of WC. Initial development of growth cone was investigated by phase-contrast microscopy, while dendritic spine formation and synaptogenesis were investigated by immunocytochemistry with SynGAPα(a postsynaptic marker) and synaptophysin (presynaptic marker) antibodies. Alteration in gene expression was analyses by microarray using rat 5K-TwinChips. Results : WC suppressed the development of growth cones and WC increased the number of dendritic spines at 20 and 50㎍/mL concentration but there was no statistical significance. Instead, it significantly decreased the number at 100㎍/mL. The expression of anti-apoptosis gene Bcl2-like 1 (Bcl211) increased (Global M=0.46), while Akt1 decreased. Proapoptosis genes Bad and PDCD2 increased. The expression of hemoglobin alpha 1 (probably neuroglobin) increased (Global M=0.93). The expression of antioxidants such as catalase, heme oxygenase (HO), and PRKAG2 gene increased. The expression PKC gene increased. The expression of retinoic acid receptor alpha (RARα) increased significantly (Global M=1.0). Conclusions : These data suggest that WC trends to suppress cellular activity slightly in normoxia and increases the expression of apoptosis-, antioxidation-, oxygen capture-related genes in hypoxia, but increases Bcl111 that anti-apoptosis gene, on the other hand increases Bad, PDCD2 that pro-apoptosis genes, too..

  • PDF

Effects of 18β-glycyrrhetinic acid on pro-inflammatory cytokines and neuronal apoptosis in the hippocampus of lipopolysaccharide-treated mice (18β-Glycyrrhetinic acid가 lipopolysaccharide에 의한 생쥐 뇌조직의 염증성 사이토카인과 해마신경세포 자연사에 미치는 영향)

  • Lee, Ji-Seung;Kwon, Man-Jae;Kweon, Su-Hyeon;Kim, Jeeho;Moon, Ji-Young;Cho, Yoon-Cheong;Shin, Jung-Won;Lee, Jong-Soo;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Objectives : $18{\beta}$-Glycyrrhetinic acid (18betaGA) is an metabolite of glycyrrhizin in Glycyrrhiza (licorice). The present study investigated anti-inflammatory and anti-apoptosis effect of 18betaGA on the brain tissue of lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : 18betaGA was administered orally with low (30 mg/kg) and high (100 mg/kg) doses for 3 days prior to LPS (3 mg/kg) injection. Pro-inflammatory cytokines mRNA including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and inflammatory enzyme cyclooxygenase-2 (COX-2) mRNA were measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Histological changes of Cornu ammonis area 1 (CA1) neurons, Bax, Bcl-2, and caspase-3 expression in the hippocampus was also evaluated by immunohistochemistry and Western blotting method. Results : 18betaGA significantly attenuated the up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 mRNA, and COX-2 mRNA expression in the brain tissues induced by the LPS injection. 18betaGA also significantly attenuated the reductions of the thickness of CA1 and the number of CA1 neurons. The up-regulation of Bax protein expression in the hippocampal tissue by the LPS injection was significantly attenuated, while the ratio of Bcl-2/Bax expression was increased by 18betaGA treatment. 18betaGA also significantly attenuated the up-regulation of Bax and caspase-3 expression in the CA1 of the hippocampus. Conclusion : This results indicate that 18betaGA has anti-inflammatory and anti-apoptosis effect under neuroinflammation induced by the LPS injection and suggest that 18betaGA may be a beneficial drug for various brain diseases accompanied with the brain tissue inflammation.