• Title/Summary/Keyword: neuron-computer

Search Result 93, Processing Time 0.026 seconds

Face Detection Using Multiple Filters and Hybrid Neural Networks (다중 필터와 복합형 신경망을 이용한 얼굴 검출 기법)

  • Cho, Il-Gook;Park, Hyun-Jung;Kim, Ho-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

  • PDF

Effects of Daejo-hwan(Tatsao-wan) on L-NAME Induced Learning and Memory Impairment and on Cerebral Ischemic Damage of the Rats (L-NAME으로 유발된 학습.기억장애와 뇌허혈 손상에 관한 대조환의 효과)

  • 김근우;구병수
    • The Journal of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.25-36
    • /
    • 2000
  • Objectives : This study demonstrates the effects of Daejo-hwan on learning and memory impairment induced by L-NAME (75 mg/kg) treatment and on cerebral ischemic damage induced by middle cerebral artery (MCA) occlusion in rats. Methods : Daejo-hwan emulsion (73.3 mg/100 g/l ml) was administered to rats along a timed study schedule. The Moms water maze was used for learning and memory test of the rats. The MCA was occluded by using the intraluminal thread method. The brain slices were stained by 2 % triphenyl tetrazolium chloride (TTC) and 1 % cresyl violet solution. Infarct size, neuron cell number and size in penumbra was measured by using computer image analysis system. Results : 1. The escape latency of the Daejo-hwan treated group decreased significantly with respect to the control group. 2.The memory score of the Daejo-hwan treated group showed increase tendency, And the swimming distance was not different between the normal, the control, and the Daejo-hwan treated group. 3. The infarct size of the Daejo-hwan treated group decreased significantly with respect to the control group. 4. The total infarct volume of the Daejo-hwan treated group showed decrease tendency. And the brain edema index of the Daejo-hwan treated group decreased significantly with respect to the control group. 5. The neuron cell number and cell size in penumbra of the Daejo-hwan treated group increased significantly with respect to the control group. Conclusions : According to the above results, it is supposed that Daejo-hwan is clinically applicable to the vascular dementia.

  • PDF

Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System (거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정)

  • Jun-Ho Choi;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.583-588
    • /
    • 2024
  • With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.

Dynamic Extension of Genetic Tree Maps (유전 목 지도의 동적 확장)

  • Ha, seong-Wook;Kwon, Kee-Hang;Kang, Dae-Seong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.6
    • /
    • pp.386-395
    • /
    • 2002
  • In this paper, we suggest dynamic genetic tree-maps(DGTM) using optimal features on recognizing data. The DGTM uses the genetic algorithm about the importance of features rarely considerable on conventional neural networks and introduces GTM(genetic tree-maps) using tree structure according of the priority of features. Hence, we propose the extended formula, DGTM(dynamic GTM) has dynamic functions to separate and merge the neuron of neural network along the similarity of features.

Path planning algorithm of mobile robot using neural network model (신경회로망 모델을 이용한 이동로봇의 경로생성 알고리즘)

  • 차영엽;유창목
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1601-1604
    • /
    • 1997
  • The most important topic in research of mobile robot is path planning in order to avoid with obstacle. In this study the path planning algorithm using a neural network model is proposed. The inputs of neural network are range data which are acquired form laser range finderm and weights are based on difference with goal direction. The thresholds are made by consdiering the marginal distance between mobile robot and obstacle. Consequently the outputs are obtained by multiplying input and weight. The obtained heading directiion enables the mobile robot to approach the goal, without any collision with obstacles around. The effectiveness of the this method of real-time navigation of a mobile robot is estimated by computer simulation in complex environment.

  • PDF

Stereo Vision Neural Networks with Competition and Cooperation for Phoneme Recognition

  • Kim, Sung-Ill;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.3-10
    • /
    • 2003
  • This paper describes two kinds of neural networks for stereoscopic vision, which have been applied to an identification of human speech. In speech recognition based on the stereoscopic vision neural networks (SVNN), the similarities are first obtained by comparing input vocal signals with standard models. They are then given to a dynamic process in which both competitive and cooperative processes are conducted among neighboring similarities. Through the dynamic processes, only one winner neuron is finally detected. In a comparative study, with, the average phoneme recognition accuracy on the two-layered SVNN was 7.7% higher than the Hidden Markov Model (HMM) recognizer with the structure of a single mixture and three states, and the three-layered was 6.6% higher. Therefore, it was noticed that SVNN outperformed the existing HMM recognizer in phoneme recognition.

A Study on Neural Network for Path Searching in Switching Network (스윗칭회로의 경로설정을 위한 신경 회로망 연구)

  • Park, Seung-Kyu;Lee, Noh-Sung;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.432-435
    • /
    • 1990
  • Neural networks are a class of systems that have many simple processors (neurons) which are highly interconnected. The function of each neuron is simple, and the behavior is determined predominately by the set of interconnections. Thus, a neural network is a special form of parallel computer. Although major impetus for using neural networks is that they may be able to "learn" the solution to the problem that they are to solve, we argue that another, perhaps even stronger, impetus is that they provide a framework for designing massively parallel machines. The highly interconnected architecture of switching networks suggests similarities to neural networks. Here, we present switching applications in which neural networks can solve the problems efficiently. We also show that a computational advantage can be gained by using nonuniform time delays in the network.

  • PDF

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF

Speeding-up for error back-propagation algorithm using micro-genetic algorithms (미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF