본 논문에서는 캐리전파가 없어 고속연산이 가능한 잉여 수 체계(Residue Number System)를 이용하여 생산자동화 시스템에서 실시간 물체인식을 위한 고속의 디지털 뉴런 프로세서를 제안하고 이를 구현하기 위한 중요연산부인 PE를 설계 및 구현하였다. 설계된 디지털 뉴런프로세서는 잉여수계를 이용한 MAC(Multiplier and Accumulator)연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산부로 구성된다. 설계된 회로는 C언어 및 VHDL로 기술하였고 Compass툴로 합성하였으며 LG $0.8{\mu}m$ CMOS공정으로 설계되었다. 실험결과 본 논문에서 설계 및 구현한 디지털 뉴런프로세서는 기존 방식의 잉여수계를 이용한 연산기 및 실수연산기로 구현한 뉴런프로세서에 비하여 3배 이상의 연산속도와 약 50%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계 및 구현한 디지털 뉴런프로세서는 실시간 처리를 요하는 생산자동화 시스템의 물체인식 시스템에 적용될 수 있을 것으로 기대된다.
스파이킹 신경망은 기존 신경망과 다른 메커니즘으로 동작한다. 기존 신경망은 신경망을 구성하는 뉴런으로 들어오는 입력 값에 대해 생물학적 메커니즘을 고려하지 않은 활성화 함수를 거쳐 다음 뉴런으로 출력 값을 전달한다. 뿐만 아니라 VGGNet, ResNet, SSD, YOLO와 같은 심층 구조를 사용한 좋은 성과들이 있었다. 반면 스파이킹 신경망은 기존 활성화함수 보다 실제 뉴런의 생물학적 메커니즘과 유사하게 동작하는 방식이지만 스파이킹 뉴런을 사용한 심층구조에 대한 연구는 기존 뉴런을 사용한 심층 신경망과 비교해 활발히 진행되지 않았다. 본 논문은 기존 뉴런으로 만들어진 심층 신경망 모델을 변환 툴에 로드하여 기존 뉴런을 스파이킹 뉴런으로 대체하여 스파이킹 심층 신경망으로 변환하는 방법에 대해 제안한다.
고해상도 위성영상에 내재된 도로 영역의 추출에 있어서 이진화, 잡음 제거, 색처리 등의 전처리 작업에 의해서 추출된 도로 후보 영역에 대한 도로 영역 식별 작업은 가장 중요한 과정이다. 따라서 본 논문에서는 전처리 작업에 의해서 추출된 도로 후보 영역에 대해서 대뇌 시각영역에서 발견되는 신경 세포(Neuron cell)의 방향-선택적 인지 기능을 계산 모델화한 공간필터(Orientation-selective spatial filter)를 적용하여 도로 영역을 식별하는 새로운 방법을 제안한다. 제안하는 방법은 전처리 결과 고립된 연결 성분으로 라벨링 된 각각의 도로후보 영역에 대해서 신경 세포형 방향 필터를 적용한 후, 강한 방향 성분이 인지된 영역을 도로 영역으로 식별한다. 제안한 방법의 성능 평가를 위해서는 위성영상으로부터 추출된 도로 후보 영역에 대해서 도로, 비도로 부류의 혼동 행렬(Confusion matrix)을 이용한 식별 정확 및 오류율을 측정하여 보인다. 실험 결과, 본 논문에서 제안한 방향 선택적 필터 기반의 방법은 추출된 도로 후보 영역에 대해서 92% 이상의 도로 식별 정확성을 보였다.
Kim, Young-Lyul;Eom, Ki-Hwan;Lim, Joong-Kyu;Son, Dong-Seol;Chung, Sung-Boo;Lee, Hyun-Kwan
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2003년도 ICCAS
/
pp.598-602
/
2003
In this paper, we propose the method to control the position of LDM(Linear DC Motor) using vision system. The proposed method is composed of a vision system for position detecting, and main computer calculates PID control output which is deliver to 8051 actuator circuit in serial communication. To confirm the usefulness of the proposed method, we experimented about position control of a small size LDM using CCD camera which has a performance 30frames/sec as vision system.
This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.
A number of studies have recently been published concerning neuron models and asynchronous neural networks. In the case of large-scale neural networks having neuron models, the neural network should be constructed using analog hardware, rather than by computer simulation via software, because of the limitation of the computational power, In this paper, we discuss the circuit structure of a synaptic section model having the spatio-temporal summation of inputs and utilizing CMOS processing.
Park, Sung-Hyun;Lee, Yeoung-Soo;Lee, Sang-Bae;Kim, Il;Tack, Han-Ho
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
/
pp.474-478
/
1998
A new approach for the decision feedback equalizer(DFE) based on the back-propagation neural networks is described. We propose the method of optimal structure for back-propagation neural networks model. In order to construct an the optimal structure, we first prescribe the bounds of learning procedure, and the, we employ the method of incrementing the number of input neuron by utilizing the derivative of the error with respect to an hidden neuron weights. The structure is applied to the problem of adaptive equalization in the presence of inter symbol interference(ISI), additive white Gaussian noise. From the simulation results, it is observed that the performance of the propose neural networks based decision feedback equalizer outperforms the other two in terms of bit-error rate(BER) and attainable MSE level over a signal ratio and channel nonlinearities.
Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3708-3728
/
2021
Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.
In this paper, we propose an intelligent CCTV technology which is applied to a recent attracted attention real-time object detection technology in a disaster alarm system. Natural disasters are rapidly increasing due to climate change (global warming). Various disaster alarm systems have been developed and operated to solve this problem. In this paper, we detect object through Neuron Network algorithm and test the difference from existing SVM classifier. Experimental results show that the proposed algorithm overcomes the limitations of existing object detection techniques and achieves higher detection performance by about 15%.
본 논문에서는 캐리 전파가 없어 고속연산이 가능한 잉여수계를 이용하여 생산자동화 시스템에서 실시간 물체인식을 위한 디지털 뉴런프로세서의 구현방법을 제안하였다. 설계된 디지털 뉴런프로세서는 잉여수계를 이용한 MAC 연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산부로 구성되며, 설계된 회로는 C언어 및 VHDL로 기술하였고 Compass 툴로 합성하였다. 최종적으로, LG 0.8${\mu}m$ CMOS 공정을 사용하여 Full Custom방식으로 설계를 수행하였다. 실험결과, 가장 나쁜 경로일 경우, 약 19nsec의 지연속도와 0.6ns의 연산속도를 보였고, 기존의 실수 연산기에 비하여 약 1/2배정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계한 디지털 뉴런프로세서는 실시간 처리를 요하는 생산자동화 시스템의 물체인식 시스템에 적용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.