• Title/Summary/Keyword: neuromuscular electrical stimulation

Search Result 93, Processing Time 0.032 seconds

Neuromuscular Electrical Stimulation of Abdominal Muscles to Improve Standing Balance

  • Je, Jeongwoo;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.269-273
    • /
    • 2022
  • Background: Neuromuscular electrical stimulation (NMES) is used for muscle strengthening. While voluntary muscle contraction follows Henneman et al.'s size principle, the NMES-induced muscle training disrespects the neurophysiology, which may lead to unwanted changes (i.e., declined balance ability). Objects: We examined how the balance was affected by abdominal muscle training with the NMES. Methods: Fifteen young adults (10 males and 5 females) aged between 21 and 30 received abdominal muscle strengthening with NMES for 23 minutes. Before and after the training, participants' balance was measured through one leg standing on a force plate with eyes open or closed. Outcome variables included mean distance (MDIST), root mean square distance (RDIST), total excursion (TOTEX), mean velocity (MVELO), and 95% confidence circle area (AREA) of center of pressure data. Two-way repeated measures analysis of variance was used to test if these outcome variables were associated with time (pre and post) and vision. Results: All outcome variables were not associated with time (p > 0.05). However, all outcome variables were associated with vision (p = 0.0001), and MVELO and TOTEX were 52.4% (45.5 mm/s versus 95.6 mm/s) and 52.4% (364.1 mm versus 764.5 mm) smaller, respectively, in eyes open than eyes closed (F = 55.8, p = 0.0005; F = 55.8, p = 0.0005). Furthermore, there was no interaction between time and vision (F = 0.024, p = 0.877). Conclusion: Despite the different neurophysiology of muscle contraction, abdominal muscle strengthening with NMES did not affect balance.

Immediate Effect of Neuromuscular Electrical Stimulation on Balance and Proprioception During One-leg Standing

  • Je, Jeongwoo;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.187-193
    • /
    • 2022
  • Background: Neuromuscular electrical stimulation (NMES) is a physical modality used to activate skeletal muscles for strengthening. While voluntary muscle contraction (VMC) follows the progressive recruitment of motor units in order of size from small to large, NMES-induced muscle contraction occurs in a nonselective and synchronous pattern. Therefore, the outcome of muscle strengthening training using NMES-induced versus voluntary contraction might be different, which might affect balance performance. Objects: We examined how the NMES training affected balance and proprioception. Methods: Forty-four young adults were randomly assigned to NMES and VMC group. All participants performed one-leg standing on a force plate and sat on the Biodex (Biodex R Corp.) to measure balance and ankle proprioception, respectively. All measures were conducted before and after a training session. In NMES group, electric pads were placed on the tibialis anterior, gastrocnemius, and soleus muscles for 20 minutes. In VMC group, co-contraction of the three muscles was conducted. Outcome variables included mean distance, root mean square distance, total excursion, mean velocity, 95% confidence circle area acquired from the center of pressure data, and absolute error of dorsi/plantarflexion. Results: None of outcome variables were associated with group (p > 0.35). However, all but plantarflexion error was associated with time (p < 0.02), and the area and mean velocity were 37.0% and 18.6% lower in post than pre in NMES group, respectively, and 48.9% and 16.7% lower in post than pre in VMC group, respectively. Conclusion: Despite different physiology underlying the NMES-induced versus VMC, both training methods improved balance and ankle joint proprioception.

The Effects of Neuromuscular Electrical Stimulation of the Quadriceps Femoris on the Balance in Patients with Total Knee Arthroplasty (넙다리네갈래근의 신경근전기자극치료가 무릎관절 전치환술 환자의 균형에 미치는 영향)

  • Hoon Jo;Sang-Cheol Im;Kyoung Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • Purpose : This study aimed to investigate how neuromuscular electrical stimulation (NMES) affects the balance ability of patients who have undergone total knee arthroplasty owing to osteoarthritis. Methods : Thirty patients who had undergone total knee arthroplasty were randomized to an experimental group (n=15) and a control group (n=15). The experimental group received conventional physical therapy for 50 minutes and NMES treatment for 30 minutes, whereas the control group received conventional physical therapy for 50 minutes and active range of motion (AROM) exercises for 30 minutes. Within-group and between-group changes in static and dynamic balance ability before and after the 4-week intervention were analyzed. Results : In the within-group comparison, sway velocity in the center of gravity and total distance were significantly improved in both the experimental and control groups (p<.05), with no significant differences between the groups (p>.05). In the within-group comparison, both the experimental and control groups showed significant improvement in the functional reach test and movement velosity (p<.05). In the between-group comparison, the experimental group showed a significantly better improvement than the control group in the functional reach test (p<.05), but there was no significant difference in the movement velosity test (p>.05). Conclusion : In this study, NMES improved the static and dynamic balance in patients who had undergone total knee arthroplasty. Compared with AROM exercises, there was a greater effect on dynamic balance partially; however, the overall effect was similar. Therefore, NMES may be one option among various interventions to improve the balance ability in patients who have undergone total knee arthroplasty. In particular, this method may be effective when it is difficult to apply balance training for patients with total knee arthroplasty in a clinical setting.

Effects of Exercise and Neuromuscular Electrical Stimulation on Lower Trapezius Muscle Activity in Individuals with Round Shoulder Posture

  • Jeong Pyo Seo;Heun-Jae Ryu
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.2
    • /
    • pp.71-77
    • /
    • 2024
  • Purpose: The prolonged use of digital devices has led to the widespread adoption of poor postures, particularly rounded shoulder posture (RSP), associated with shoulder impingement and pain. This study investigates the effects of neuromuscular electrical stimulation (NMES) on RSP in healthy adults. Methods: Thirty adults with RSP were randomly assigned to NMES only, exercise only, or NMES with exercise groups. NMES was applied to the lower trapezius, which was the target muscle in this study, for a total of 2 weeks, 5 times per week, 20 minutes per session. The exercise program included pectoralis minor stretching, wall-slide exercise, dynamic hug exercise with band, and Brugger stretching for upper body with band, which were performed for a total of 2 weeks, 5 times per week, 20 minutes per session. Outcome measures, including the Supine Method (SM) for posture and surface electromyography (EMG) of the lower trapezius for muscle activity, were assessed before the intervention, after 5 sessions, and after 10 sessions. Results: All the groups showed significant changes in the SM and % maximal voluntary isometric contraction (%MVIC) over time (p<0.05). The NMES group had significantly reduced SM at 1 week, while the exercise and combined groups had reduced SM at 2 weeks (p<0.017). All the groups had increased %MVIC at 2 weeks (p<0.017), with no significant differences observed between groups. Conclusion: NMES alone can be as effective as exercise in improving RSP. NMES combined with exercise also showed positive outcomes, thus offering diverse treatment options for this condition.

Effects of Combined Breathing Exercise and Neuromuscular Electrical Stimulation on Patients with Severe COPD (중증 만성폐쇄성폐질환 환자를 위한 복합호흡운동과 신경근전기자극의 효과)

  • Kang, Jeong-Il;Park, Jun-Su;Jeong, Dae-Keun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.539-548
    • /
    • 2019
  • This study was designed to examine the effects of complex breathing exercise and neuromuscular electrical stimulation of Quadriceps Femoris muscle on pulmonary function and cerebral cortex activity in patients with severe chronic obstructive pulmonary disease. After collecting samples from 20 patients with severe chronic obstructive pulmonary disease aged 60 to 80, 10 patients each were randomly placed in an experimental group and a control group. The experimental group conducted complex breathing exercise and neuromuscular electrical stimulation of Quadriceps Femoris muscle, and the control group only conducted complex breathing exercise. As a pretest, pulmonary function and cerebral cortex activity were measured. The intervention program was applied to each group for 30 minutes, once a day, for 4 days a week, for 6 weeks, and the posttest was carried out the same way as the pretest. As a result, both groups showed significant differences in FEV1.0(Forced Expiratory Volume in One Second)(p<.001)(p<.05), and there were significant differences between the groups as well(p<.05). When comparing alpha waves in each domain of cerebral cortex, both of the experimental and control groups showed significant differences in Fp1, Fp2, F3 and F4 domains (p<.01)(p<.05). During the 6-week experiment, complex breathing exercise and neuromuscular electrical stimulation of Quadriceps Femoris muscle improved pulmonary function of patients with severe chronic obstructive pulmonary disease, and in relation to cerebral cortex activity, a positive breathing change was found due to the increase of alpha waves in the forehead domain. Therefore, it is considered that applying neuromuscular electrical stimulation of Quadriceps Femoris muscle to patients with severe chronic obstructive pulmonary disease additionally along with complex breathing exercise will bring a better therapeutic effect.

Effect of Electrical Stimulation on Upper Extremity Function in Stroke Patients: A Systematic Review Based on Randomized Controlled Trials (뇌졸중 환자의 상지 기능에 기능적 전기 자극이 미치는 영향: 무작위대조군연구에 기초한 체계적 고찰)

  • Hwang, Su-jin;Seo, Yeon-ju
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2022
  • Objective: Electrical stimulation is an assistive technology used to aid the recovery of upper limb use after stroke. The purpose of this systematic review was to determine the effects of electrical stimulation on upper extremity function in individuals with hemiparetic stroke and to develop an evidence base that supports the use of electrical stimulation for upper limb recovery after stroke. Design: A systematic review based on randomized controlled trials (RCTs). Methods: Studies published before April 20 2021 were collected for this review by searching PubMed, four other databases, and RCTs that reported the effects of electrical stimulation on upper extremity function in individuals with the characteristic stroke type. Information on the following parameters was extracted from each study: surname of first author, published year, country, participants, intervention, intervention's intensity, comparison, outcomes, additional therapy, and summary of results. This review also evaluated the bias within each study, including any selection bias, performance bias, detection bias, attrition bias, and reporting bias. Results: This review included five RCTs, and 208 stroke patients were included in the analysis. Stroke patients who underwent electrical stimulation showed significantly improved grip and pinch strengths, wrist range of motion, and basic daily living compared to those in the control group; however, there was no improvement in upper extremity function. Of the selected papers, 60% showed a "high risk" of performance bias, and 20% showed a "high risk" of detection bias. Conclusions: The results of this systematic review suggest that electrical stimulation provides some benefits to stroke patients, such as improved hand strength and range of motion. However, future studies are needed to provide clinical evidence of the effects of electrical stimulation on upper extremity function in stroke patients.

Effects of Intramuscular Electrical Stimulation Using Inversely Placed Electrodes on Myofascial Pain Syndrome in the Shoulder - A Case Series

  • Shanmugam, Sukumar;Mathias, Lawrence;Thakur, Ajay;Kumar, Dhanesh
    • The Korean Journal of Pain
    • /
    • v.29 no.2
    • /
    • pp.136-140
    • /
    • 2016
  • Myofascial pain syndrome (MPS) is one of the common musculoskeletal conditions of the shoulder which may develop sensory-motor and autonomic dysfunctions at the various level of the neuromuscular system. The pain and dysfunction caused by MPS were primarily treated with physical therapy and pharmacological agents in order to achieve painfree movements. However, in recent years intramuscular electrical stimulation (IMES) with conventional electrode placement was used by researchers to maximise therapeutic values. But, in this study an inverse electrode placement was used to deliver electrical impulses intramuscularly to achieve neuro-modulation at the various level of the nervous system. Nine patients with MPS were treated with intramuscular electrode stimulation using inversely placed electrodes for a period of three weeks. All nine subjects recovered from their shoulder pain and disability within the few weeks of intervention. So, this inverse electrode placement may be more appropriate for chronic pain management.

A Study on the Functional Electrical Stimulation (기능적 전기 자극에 대한 고찰)

  • Lim, Jong-Soo;Kim, Soon-Hee;Song, Young-Wha
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.4
    • /
    • pp.187-199
    • /
    • 1999
  • Functional Electrical Stimulation (FES) is used for muscle reeducation, reduction of spasticity, delay of atrophy, and muscle strengthening. FES stronger stimulation than other forms of electrical stimulation. The efficacy of FES in improving function has been substantiated in the literature. Treatment programs employing FES - activation of muscular tissue through the intact peripheral nervous system - can be broken into five major categories, according to the goal of treatment. These broad areas would include the use of FES to: (1) a direct excitation onto the alpha motoneuron, through peripheral stimulation of the Ia myotatic sensory system and ascending afferent information, which will be integrated at conscious and subconscious level of the CNS. (2) The quality of a stimulated muscle contraction is determined by combination of many parameters, including stimulus amplitude, pulse duration, stimulus frequency, and duty cycle. (3) A unit that has a pulse duration between 200 and $400{\mu}sec$ will be more than adequate for FES applications. (4) The neuromuscular plasticity is critically important to return of function using muscle re-education and facilitation applications. (5) Prior to using FES as an electrical orthosis, the patient should build up endurance in the muscles to be stimu1ated during the gait cycle.

  • PDF

Effect of Oral Motor Facilitation Technique (OMFT) and Neuromuscular Electrical Stimulation (NMES) Applied to a Patient With Wallenberg's Syndrome: A Case Study (발렌버그 증후군(Wallenberg's Syndrome) 환자에게 적용한 구강운동촉진기술(OMFT)과 신경근전기자극치료(Neuromusclular Electrical Stimulation; NMES) 효과: 단일 사례 연구)

  • Son, Yeong Soo;Min, Kyoung Chul;Woo, Hee-Soon
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.4
    • /
    • pp.69-83
    • /
    • 2022
  • Objective : This study aimed to confirm the possibility of the clinical application of oral motor facilitation technique (OMFT) protocol and neuromuscular electrical stimulation (NMES) in patients with Wallenberg syndrome. Methods : One patient with Wallenberg syndrome was treated with OMFT and NMES applied 40 times each, 5 days a week, twice a day for 4 weeks. The Comprehensive Oral-Facial Function Scale (COFFS), Korean-Mann Swallowing Ability Assessment (K-MASA), and Penetration-Aspiration Scale (PAS) were used to compare the changes before and after the intervention. Data analysis was used to compare the score changes before and after the intervention. Results : Orofacial function and swallowing ability improved after the intervention in the individual who participated in this study. Among oral motor functions, relatively greater functional improvement was observed in tongue movement compared to other functions, which was evaluated to the extent that pharyngeal swallowing was possible. Conclusions : Early swallowing rehabilitation using systematic OMFT and NMES of exercise intensity confirmed the possibility of improving oral motor function and dysphagia. In the future, complementary studies on the effects of interventions applying the OMFT and NMES will be needed.