• Title/Summary/Keyword: neuroD

Search Result 103, Processing Time 0.028 seconds

Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis

  • Umair, Zobia;Kumar, Shiv;Kim, Daniel H.;Rafiq, Khezina;Kumar, Vijay;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1061-1071
    • /
    • 2018
  • From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.

Visual servoing based on neuro-fuzzy model

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.712-715
    • /
    • 1997
  • In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated coordinate transformations. These are required excessive computation and the singularity of the image jacobian should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks. Computer simulation results are presented to demonstrate the performance of this visual servoing

  • PDF

The Design and Implementation of An Intelligent Neuro-Fuzzy System(INFS) (지능적인 뉴로-퍼지 시스템의 설계 및 구현)

  • 조영임;황종선;손진곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.149-161
    • /
    • 1994
  • The Max-Min CRI method , a traditional inference method , has three problems: subjective formulation of membership functions, error-prone weighting strategy, and inefficient compositional rule of inference. Because of these problems, there is an insurmountable error region between desired output and inferred output. To overcome these problems, we propose an Intelligent Neuro-Fuzzy System (INFS) based on fuzzy thoery and self-organizing functions of neural networks. INFS makes use of neural networks(Error Back Propagation) to solve the first problem, and NCRI(New Max-Min CRI) method for the second. With a proposed similarity measure, NCRI method is an improved method compared to the traditional Max-Min CRI method. For the last problem, we propose a new defuzzification method which combines only the appropriate rules produced by the rule selection level. Applying INFS to a D.C. series motor, we can conclude that the error region is reduced and NCRI method performs better than Max-Min CRI method.

  • PDF

Development of Insulation Degradation Diagnosis System for Electrical Plant

  • Kim, Yi-Gon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • Insulation aging diagnosis system provides early warning regarding electrical equipment defects. Early warning is very important in that it can avoid great losses resulting from unexpected shutdown of the production line. Since relations of insulation aging and partial discharge dynamics are non-linear. it is very difficult to provide early warning in an electrical equipment. In this paper, we propose the design method of insulation aging diagnosis system that use a electromagnetic wave and acoustic signal to diagnose an electrical equipment. Proposed system measures the partial discharge on-line from DAS(Data Acquisition System and acquires 2D patterns from analyzing it. For filtering the noise contained in sensor signals we used ICA algorithms. Using this data, we design of the neuro-fuzzy model that diagnoses an electrical equipment and is investigated in this paper. Validity of the new method is asserted by numerical simulation.

Maximum Torque Control of SynRM using AFNIS(Adaptive Fuzzy Neuro Inference) (AFNIS를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.219-220
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using adaptive fuzzy neuro inference system(AFNIS) and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled AFNIS and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the AFNIS and ANN controller.

  • PDF

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.

Transformer Protective Relaying Algorithm Using Neuro-Fuzzy based on Wavelet Transform (웨이브렛 변환기반 뉴로-퍼지를 이용한 변압기 보호계전 알고리즘)

  • Lee Myoung Rhun;Lee Jong Beom;Hong Dong suk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.607-609
    • /
    • 2004
  • A breakdown occurred in power transformer causes interruption of power transmission. Protective relay should be installed in transformer to detect such a fault. Protective relaying algorithm for transformer must be included a function to discriminate between winding fault and inrushing state. Recently, current differential relay is widely used to protect power transformer. However if inrush occurs in transformer, relay can be tripped by judging as internal fault. New algorithms are required in order to such problem. This study proposes a new protective relaying algorithm using Neuro-Fuzzy inference and wavelet. A variety of transformer transient states are simulated by BCTRAN and HYSDT in EMTP. D1 coefficients of differential current are obtained by wavelet transform. D1 coefficients and RMS of 3-phase primary voltage are used to make a target data and are trained by Nwo-Fuzzy algorithm which distinguishes correctly whether internal fault occurs or not within 1/2 after fault detection. It is evaluated that the results obtained by simulations can effectively protect a transformer by contact discriminating between winding fault and inrushing state.

  • PDF

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

A Self-Organizing Model Based Rate Control Algorithm for MPEG-4 Video Coding

  • Zhang, Zhi-Ming;Chang, Seung-Gi;Park, Jeong-Hoon;Kim, Yong-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.72-78
    • /
    • 2003
  • A new self-organizing neuro-fuzzy network based rate control algorithm for MPEG-4 video encoder is proposed in this paper. Contrary to the traditional methods that construct the rate-distorion (RD) model based on experimental equations, the proposed method effectively exploits the non-stationary property of the video date with neuro-fuzzy network that self-organizes the RD model online and adaptively updates the structure. The method needs not require off-line pre-training; hence it is geared toward real-time coding. The comparative results through the experiments suggest that our proposed rate control scheme encodes the video sequences with less frame skip, providing good temporal quality and higher PSNR, compared to VM18.0.