• 제목/요약/키워드: neuro-fuzzy inference

검색결과 230건 처리시간 0.03초

퍼지의사결정을 이용한 RC구조물의 건전성평가 (Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making)

  • 손용우;정영채;김종길
    • 한국전산구조공학회논문집
    • /
    • 제17권2호
    • /
    • pp.131-140
    • /
    • 2004
  • 철근콘크리트 구조물의 보수ㆍ보강 등의 유지관리를 위해서는 내구성과 내하성을 동시에 고려한 건전성평가의 의사결정기준이 절실히 요구된다. 본 논문은 CART-ANFIS을 사용하는 철근콘크리트 구조물에 대하여 효율적인 모델을 나타내었다. 철근콘크리트 구조물의 손상과 진단 등에 활용되어온 분류형 전문가시스템의 일종인 퍼지이론을 이용한 결정목 구조와 기존의 인공신경망을 이용한 결정목 구조의 건전성평가를 비교 분석한다. 손상된 철근콘크리트의 내구성 회복을 위한 보강설계 이론과 내하력 증가를 위한 보장설계 이론을 정립시켜 손상검출의 산정식을 유도하였다. 본 연구의 건전성 평가시스템 모델을 이용함으로서 보다 효율적인 철근콘크리트 유지관리 뿐만 아니라 생애주기비용 예측을 수행 할 수 있다.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

헬리콥터 터보축 엔진의 온라인 상태진단 프로그램 연구 (Study of On-line Performance Diagnostic Program of A Helicopter Turboshaft Engine)

  • 공창덕;구영주;고성희;유혁
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1238-1244
    • /
    • 2009
  • 본 연구는 헬리콥터용 터보축엔진의 온라인 상태진단을 위해 퍼지-신경망 알고리즘을 제안하였고 GUI 형태의 SIMULINK프로그램으로 개발하였다. 진단 프로그램 개발을 위해 look-up 테이블 형식 기본 성능 모듈로 계산시간을 줄였고 실시간 성능 데이터를 획득하기위해 신호 생성 모듈을 사용하였다. 이 프로그램은 계측성능상태를 모니터링하기위한 온라인 상태모니터링 프로그램과 계측데이터와 퍼지를 이용한 정성적인 상태진단과 신경 회로망을 이용한 정량적인 상태진단으로 이루어진다. 제안된 온라인 진단 프로그램은 헬리콥터엔진의 상태모니터링에 적용 가능여부를 확인하기 위하여 터보샤프트 엔진을 대상으로 검증하였다.

Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models

  • Komleh, H. Ebrahimpour;Maghsoudi, A.A.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.399-414
    • /
    • 2015
  • Nowadays, fiber reinforced polymer (FRP) composites are widely used for rehabilitation, repair and strengthening of reinforced concrete (RC) structures. Also, recent advances in concrete technology have led to the production of high strength concrete, HSC. Such concrete due to its very high compression strength is less ductile; so in seismic areas, ductility is an important factor in design of HSC members (especially FRP strengthened members) under flexure. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) and multiple regression analysis are used to predict the curvature ductility factor of FRP strengthened reinforced HSC (RHSC) beams. Also, the effects of concrete strength, steel reinforcement ratio and externally reinforcement (FRP) stiffness on the complete moment-curvature behavior and the curvature ductility factor of the FRP strengthened RHSC beams are evaluated using the analytical approach. Results indicate that the predictions of ANFIS and multiple regression models for the curvature ductility factor are accurate to within -0.22% and 1.87% error for practical applications respectively. Finally, the effects of height to wide ratio (h/b) of the cross section on the proposed models are investigated.

Dynamic ATC Computation for Real-Time Power Markets

  • Venkaiah, Ch.;Kumar, D.M. Vinod;Murali, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.209-219
    • /
    • 2010
  • In this paper, a novel dynamic available transfer capability (DATC) has been computed for real time applications using three different intelligent techniques viz. i) back propagation algorithm (BPA), ii) radial basis function (RBF), and iii) adaptive neuro fuzzy inference system (ANFIS) for the first time. The conventional method of DATC is tedious and time consuming. DATC is concerned with calculating the maximum increase in point to point transfer such that the transient response remains stable and viable. The ATC information is to be continuously updated in real time and made available to market participants through an internet based Open Access Same time Information System (OASIS). The independent system operator (ISO) evaluates the transaction in real time on the basis of DATC information. The dynamic contingency screening method [1] has been utilized and critical contingencies are selected for the computation of DATC using the energy function based potential energy boundary surface (PEBS) method. The PEBS based DATC has been utilized to generate patterns for the intelligent techniques. The three different intelligent methods are tested on New England 68-bus 16 machine and 39-bus 10 machine systems and results are compared with the conventional PEBS method.

도시하천방재를 위한 지능형 모니터링에 관한 연구 (Monitoring Technology for Flood Forecasting in Urban Area)

  • 김형우;이범교
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.405-408
    • /
    • 2008
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델 (River stage forecasting models using support vector regression and optimization algorithms)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

전력 효율 향상을 위한 하이브리드 인공지능 기반의 비대칭 멀티코어 프로세서용 프로세스 스케줄러 (Hybrid AI Based Process Scheduler for Asymmetric Multicore Processor to Improve Power Efficiency)

  • 정원섭;김승훈;이상민;노원우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.180-183
    • /
    • 2013
  • 근래의 프로세서는 하나의 다이 위에 여러 개의 코어를 배치한 멀티코어 형태를 띠고 있다. 최근에는 프로세서의 에너지 소비량을 줄이기 위해 비대칭 멀티코어를 활용하여 동일한 성능을 유지하며 소비전력을 낮추는 방법에 대한 연구가 활발히 진행되고 있다. 비대칭 멀티코어의 장점을 최대한 활용하기 위해서는 대칭형 멀티코어와는 달리 실행해야 할 프로세스와 상이한 코어간의 작동 특성을 고려해야 한다. 본 논문에서는 전력 소비 효율 향상을 위해 프로세스 스케줄링 알고리즘에 하이브리드 인공지능 기술인 Adaptive Neuro Fuzzy Inference System (ANFIS)를 적용하여 각 프로세스에 적합한 코어를 찾아 할당하는 방법을 제안한다. 시뮬레이션 결과 제안하는 프로세스 스케줄러는 리눅스의 CFS 대비 평균 35.4% 낮은 Energy Delay Product (EDP)를 보였으며 이를 통해 하이브리드 인공지능을 적용한 프로세스 스케줄링 알고리즘의 유효성을 입증하였다.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.