• 제목/요약/키워드: neuro-fuzzy controller

검색결과 128건 처리시간 0.03초

교류 서보 전동기의 속도제어를 위한 뉴러퍼지 관측기설계 (Speed Control of AC Servo Motor Using Neural Network)

  • 반기종;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권4호
    • /
    • pp.158-160
    • /
    • 2006
  • In this paper, a neuro-fuzzy observer system is designed using neuro-fuzzy system for speed control of AC servo motor. This neuro-fuzzy observer is proposed to with the problems occur in the Luenberger observer and sliding observer. The problems of Luenberger and sliding observer are to have to know the dynamics and internal parameters of the system. Performance of the neuro-fuzzy observer system has verified through the experiment with dynamometer load. It is shown that feasibility of the neuro-fuzzy observer is verified.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

지연시간을 갖는 비선형 시스템을 위한 퍼지-신경망 기반 예측제어기 설계 (Design of Neuro-Fuzzy-based Predictive Controller for Nonlinear Systems with Time Delay)

  • 김성호;김주환;이영삼
    • 한국지능시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.144-150
    • /
    • 2002
  • 본 논문에서는 지연시간을 갖는 비선형 시스템의 효율적 제어를 위해 퍼지-신경망에 기반한 지연시간 보상기를 제안하였다. 제안된 제어시스템은 ANFIS(Adaptive Neuro-Fuzzy Inference System)라고 불리는 두개의 퍼지-신경망으로 구성되며 이중 하나는 직-병렬 방식으로 동작하고 다른 하나는 병렬 방식으로 동작한다. 직-병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 갖는 비선형 시스템의 응답을 추종하는 특성을 갖으며 병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 보상하기 위한 시스템 출력을 예측하는 기능을 수행한다. 따라서 본 연구에서 제안된 시스템은 전형적인 Smith 예측기의 비선형 시스템에의 적용을 위한 확장이라고 생각할 수 있다. 본 논문에서는 제안된 지연시간 보상기의 상세한 설계과정을 보였으며 또한 제안된 제어기 설계 기법의 유용성 화인을 위해 비선형 수치데이터에 대한 컴퓨터 모의실험을 수행하였다.

뉴로 퍼지망을 이용한 비선형 시스템 제어 (Control of the Nonlinear System Using Neuro Fuzzy Network)

  • 김동훈;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1073-1075
    • /
    • 1996
  • This paper presents a neuro fuzzy system(NFS) for implementing fuzzy inference system with a monotonic membership function. The modeling and control of a discrete nonlinear system using a NFS is described. The membership function parameters of a identifier and controller are adjusted by back-propagation algorithm. These identifier and controller is constructed to proposed NFS. A on-line identification and control are accomplished by this NFS. A controller is gived information of the system, that is variation of the system output according to that of the control input by a identifier. A controller makes control input in order to control discrete-time nonlinear system. A Simulation is presented to demonstrate the efficiency of a suggested method.

  • PDF

Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발 (A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm)

  • 김면희;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구 (Control of Magnetic Flywheel System by Neuro-Fuzzy Logic)

  • 양원석;김영배
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

유전자 알고리즘과 Estimation기법을 이용한 퍼지 제어기 설계 (Design of Fuzzy PID Controller Using GAs and Estimation Algorithm)

  • 노석범;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.416-419
    • /
    • 2001
  • In this paper a new approach to estimate scaling factors of fuzzy controllers such as the fuzzy PID controller and the fuzzy PD controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors[1]. The desist procedure dwells on the use of evolutionary computing(a genetic algorithm) and estimation algorithm for dynamic systems (the inverted pendulum). The tuning of the scaling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as Neuro-Fuzzy model, and regression polynomial [7]. This method can be applied to the nonlinear system as the inverted pendulum. Numerical studies are presented and a detailed comparative analysis is also included.

  • PDF

A neuro-fuzzy adaptive controller

  • Chung, Hee-Tae;Lee, Hyun-Cheol;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.261-264
    • /
    • 1992
  • This paper proposes a neuro-fuzzy adaptive controller which includes the procedure of initializing the identification neural network(INN) and that of learning the control neural network(CNN). The identification neural network is initialized with the informations of the plant which are obtained by a fuzzy controller and the control neural network is trained by the weight informations of the identification neural network during on-line operation.

  • PDF

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.