• Title/Summary/Keyword: neuro-fuzzy Inference

Search Result 231, Processing Time 0.027 seconds

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Inference of RMR Value Using Fuzzy Set Theory and Neuro-Fuzzy Techniques (퍼지집합이론 및 뉴로-퍼지기법을 이용한 RMR 값의 추론)

  • 배규진;조만섭
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.289-300
    • /
    • 2001
  • In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR value from the observation data. The correlation between original RMR vague and inferred RM $R_{_FU}$ and RM $R_{_NF}$ values from fuzzy set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and infected RM $R_{_FU}$ and RM $R_{_NF}$ value is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mats classification is proved to be sufficiently high enough. enough.

  • PDF

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF

Identification of Nonlinear Dynamic Systems via the Neuro-Fuzzy Computing and Genetic Algorithms

  • Lee, Seon-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1892-1896
    • /
    • 2005
  • In this paper, an effective method for selecting significant input variables in building ANFIS (Adaptive Neuro-Fuzzy Inference System) for nonlinear system modeling is proposed. Dominant inputs in a nonlinear system identification process are extracted by evaluating the performance index and they are applied to ANFIS. The availability of our proposed model is verified with the Box and Jenkins gas furnace data. The comparisons with other methods are also given in this paper to show our proposed method is superior to other models.

  • PDF

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

BOX-AND-ELLIPSE-BASED NEURO-FUZZY APPROACH FOR BRIDGE COATING ASSESSMENT

  • Po-Han Chen;Ya-Ching Yang;Luh-Maan Chang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Image processing has been utilized for assessment of infrastructure surface coating conditions for years. However, there is no robust method to overcome the non-uniform illumination problem to date. Therefore, this paper aims to deal with non-uniform illumination problems for bridge coating assessment and to achieve automated rust intensity recognition. This paper starts with selection of the best color configuration for non-uniformly illuminated rust image segmentation. The adaptive-network-based fuzzy inference system (ANFIS) is adopted as the framework to develop the new model, the box-and-ellipse-based neuro-fuzzy approach (BENFA). Finally, the performance of BENFA is compared to the Fuzzy C-Means (FCM) method, which is often used in image recognition, to show the advantage and robustness of BENFA.

  • PDF

An Adaptive Input Data Space Parting Solution to the Synthesis of N euro- Fuzzy Models

  • Nguyen, Sy Dzung;Ngo, Kieu Nhi
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.928-938
    • /
    • 2008
  • This study presents an approach for approximation an unknown function from a numerical data set based on the synthesis of a neuro-fuzzy model. An adaptive input data space parting method, which is used for building hyperbox-shaped clusters in the input data space, is proposed. Each data cluster is implemented here as a fuzzy set using a membership function MF with a hyperbox core that is constructed from a min vertex and a max vertex. The focus of interest in proposed approach is to increase degree of fit between characteristics of the given numerical data set and the established fuzzy sets used to approximate it. A new cutting procedure, named NCP, is proposed. The NCP is an adaptive cutting procedure using a pure function $\Psi$ and a penalty function $\tau$ for direction the input data space parting process. New algorithms named CSHL, HLM1 and HLM2 are presented. The first new algorithm, CSHL, built based on the cutting procedure NCP, is used to create hyperbox-shaped data clusters. The second and the third algorithm are used to establish adaptive neuro- fuzzy inference systems. A series of numerical experiments are performed to assess the efficiency of the proposed approach.