• Title/Summary/Keyword: neural-fuzzy control

Search Result 662, Processing Time 0.028 seconds

Adaptive Fuzzy Logic Control Using a Predictive Neural Network (예측 신경망을 이용한 적응 퍼지 논리 제어)

  • 정성훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.46-50
    • /
    • 1997
  • In fuzzy logic control, static fuzzy rules cannot cope with significant changes of parameters of plants or environment. To solve this prohlem, self-organizing fuzzy control. neural-network-hased fuzzy logic control and so on have heen introduced so far. However, dynamically changed fuzzy rules of these schemes may make a fuzzy logic controller Fall into dangerous situations because the changed fuzzy rules may he incomplete or inconsistent. This paper proposes a new adaptive filzzy logic control scheme using a predictivc neural network. Although some parameters of a controlled plant or environment are changed, proposed fuzzy logic controller changes its decision outputs adaptively and robustly using unchanged initial fuzzy rules and the predictive errors generated hy the predictive neural network by on-line learning. Experimental results with a D<' servo-motor position control problem show that propnsed cnntrol scheme is very useful in the viewpoint of adaptability.

  • PDF

The optimization of fuzzy neural network using genetic algorithms and its application to the prediction of the chaotic time series data (유전 알고리듬을 이용한 퍼지 신경망의 최적화 및 혼돈 시계열 데이터 예측에의 응용)

  • Jang, Wook;Kwon, Oh-Gook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.708-711
    • /
    • 1997
  • This paper proposes the hybrid algorithm for the optimization of the structure and parameters of the fuzzy neural networks by genetic algorithms (GA) to improve the behaviour and the design of fuzzy neural networks. Fuzzy neural networks have a distinguishing feature in that they can possess the advantage of both neural networks and fuzzy systems. In this way, we can bring the low-level learning and computational power of neural networks into fuzzy systems and also high-level, human like IF-THEN rule thinking and reasoning of fuzzy systems into neural networks. As a result, there are many research works concerning the optimization of the structure and parameters of fuzzy neural networks. In this paper, we propose the hybrid algorithm that can optimize both the structure and parameters of fuzzy neural networks. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Adaptive Fuzzy Neural Control of Unknown Nonlinear Systems Based on Rapid Learning Algorithm

  • Kim, Hye-Ryeong;Kim, Jae-Hun;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.95-98
    • /
    • 2003
  • In this paper, an adaptive fuzzy neural control of unknown nonlinear systems based on the rapid learning algorithm is proposed for optimal parameterization. We combine the advantages of fuzzy control and neural network techniques to develop an adaptive fuzzy control system for updating nonlinear parameters of controller. The Fuzzy Neural Network(FNN), which is constructed by an equivalent four-layer connectionist network, is able to learn to control a process by updating the membership functions. The free parameters of the AFN controller are adjusted on-line according to the control law and adaptive law for the purpose of controlling the plant track a given trajectory and it's initial values are off-line preprocessing, In order to improve the convergence of the learning process, we propose a rapid learning algorithm which combines the error back-propagation algorithm with Aitken's $\delta$$\^$2/ algorithm. The heart of this approach ls to reduce the computational burden during the FNN learning process and to improve convergence speed. The simulation results for nonlinear plant demonstrate the control effectiveness of the proposed system for optimal parameterization.

  • PDF

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발)

  • 김휘동;양승윤;전완수;안병국;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle (궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

A Learning Algorithm of Fuzzy Neural Networks Using a Shape Preserving Operation

  • Lee, Jun-Jae;Hong, Dug-Hun;Hwang, Seok-Yoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.131-138
    • /
    • 1998
  • We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact result in learning the network. And we illustrate our approach by computer simulations on numerical examples.

  • PDF