• Title/Summary/Keyword: neural transdifferentiation

Search Result 6, Processing Time 0.021 seconds

Neural Transdifferentiation: MAPTau Gene Expression in Breast Cancer Cells

  • Lara-Padilla, E;Miliar-Garcia, A;Gomez-Lopez, M;Romero-Morelos, P;Bazan-Mendez, CI;Alfaro-Rodriguez, A;Anaya-Ruiz, M;Callender, K;Carlos, A;Bandala, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1967-1971
    • /
    • 2016
  • Background: In tumor cells, aberrant differentiation programs have been described. Several neuronal proteins have been found associated with morphological neuronal-glial changes in breast cancer (BCa). These neuronal proteins have been related to mechanisms that are involved in carcinogenesis; however, this regulation is not well understood. Microtubule-associated protein-tau (MAP-Tau) has been describing in BCa but not its variants. This finding could partly explain the neuronal-glial morphology of BCa cells. Our aim was to determine mRNA expression of MAP-tau variants 2, 4 and 6 in breast cancer cell lines. Materials and Methods: Cultured cell lines MCF-10A, MDA-MB-231, SKBR3 and T47D were observed under phase-contrast microscopy for neural morphology and analyzed for gene expression of MAP-Tau transcript variants 2, 4 and 6 by real-time PCR. Results: Regarding morphology like neural/glial cells, T47D line shown more cells with these features than MDA-MB-231 and SKBR. In another hand, we found much greater mRNA expression of MAP-Tau transcript variants 2, and to a lesser extent 4 and 6, in T47D cells than the other lines. In conclusion, regulation of MAP-Tau could bring about changes in cytoskeleton, cell morphology and motility; these findings cast further light on neuronal transdifferentiation in BCa.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Synaptic Vesicle Protein 2 (SV2) Isoforms

  • Bandala, Cindy;Miliar-Garcia, A.;Mejia-Barradas, C.M.;Anaya-Ruiz, M.;Luna-Arias, J.P.;Bazan-Mendez, C.I.;Gomez-Lopez, M.;Juarez-Mendez, S.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5063-5067
    • /
    • 2012
  • New molecular markers of cancer had emerged with novel applications in cancer prevention and therapeutics, including for breast cancer of unknown causes, which has a high impact on the health of women worldwide. The purpose of this research was to detemine protein and mRNA expression of synaptic vesicle 2 (SV2) isoforms A, B and C in breast cancer cell lines. Cultured cell lines MDA-MB-231, SKBR3, T47D were lysed and their protein and mRNA expression analyzed by real-time PCR and western blot technique, respectively. SV2A, B proteins were identified in non-tumor (MCF-10A) and tumor cell lines (MDA-MB-231 and T47D) while SV2C only was found in the T47D cell line. Furthermore, the genomic expression was consistent with protein expression for a such cell line, but in MDA-MB-231 there was no SV2B genomic expression, and the SV2C mRNA and protein were not found in the non tumoral cell line. These findings suggest a possible cellular transdifferentiation to neural character in breast cancer, of possible relevance to cancer development, and point to possible use of SV2 as molecular marker and a vehicle for cancer treatment with botulinum toxin.

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood (인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화)

  • Kam, Kyung-Yoon;Kang, Ji-Hye;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.235-243
    • /
    • 2007
  • Human umbilical cord blood(HUCB) contains a rich source of hematopoietic stem cells, mesenchymal stem cells and endothelial cell precursors. Mesenchymal stem cells(MSCs) in HUCB are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. We studied on transdifferentiation-promoting conditions in neural cells and cholinergic neuron induction of HUCB-derived MSCs. Neural differentiation was induced by addingdimethyl sulphoxide(DMSO) and butylated hydroxyanisole(BHA) in Dulbeco's Modified Essential Medium(DMEM) and fetal bovine serum(FBS). Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor(bFGF), retinoic acid(RA) and sonic hedgehog(Shh). MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including $\beta$-tubulin III, GFAP and MBP, was markedly elevated during this acute differentiation. The differentiation rate was about $32.3{\pm}2.9%$ for $\beta$-tubulin III-positive cells, $11.0{\pm}0.9%$ for GFAP, and $9.4{\pm}1.0%$ for Gal-C. HUCB-MSCs treated combinatorially with bFGF, RA and Shh were differentiated into cholinergic neurons. After cholinergic neuronal differentiation, the $\beta$-tubulin III-positive cell population of total cells was $31.3{\pm}3.2%$ and of differentiated neuronal population, $70.0{\pm}7.8%$ was ChAT-positive showing 3 folds higher in cholinergic population than neural induction. Conclusively, HUCB-derived MSCs can be differentiated into neural and cholinergic neurons and these findings suggest that HUCB are alternative cell source of treatment for neurodegenerative diseases such as Alzheimer's disease.

  • PDF

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF