Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.10.5063

Synaptic Vesicle Protein 2 (SV2) Isoforms  

Bandala, Cindy (Research Support Group, National Institute of Rehabilitation, Escuela Superior de Medicina, Instituto Politecnico Nacional)
Miliar-Garcia, A. (Oncology and Oxidative Stress Laboratory, Escuela Superior de Medicina, Instituto Politecnico Nacional)
Mejia-Barradas, C.M. (Research Support Group, National Institute of Rehabilitation, Escuela Superior de Medicina, Instituto Politecnico Nacional)
Anaya-Ruiz, M. (Molecular Biology Laboratory, Escuela Superior de Medicina, Instituto Politecnico Nacional)
Luna-Arias, J.P. (Cell Biology Laboratory, Eastern Biomedical Research Center, Instituto Mexicano del Seguro Social)
Bazan-Mendez, C.I. (Cell Biology Laboratory, Eastern Biomedical Research Center, Instituto Mexicano del Seguro Social)
Gomez-Lopez, M. (Oncology and Oxidative Stress Laboratory, Escuela Superior de Medicina, Instituto Politecnico Nacional)
Juarez-Mendez, S. (Cell Biology Laboratory, CINVESTAV)
Lara-Padilla, E. (Research Support Group, National Institute of Rehabilitation, Escuela Superior de Medicina, Instituto Politecnico Nacional)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.10, 2012 , pp. 5063-5067 More about this Journal
Abstract
New molecular markers of cancer had emerged with novel applications in cancer prevention and therapeutics, including for breast cancer of unknown causes, which has a high impact on the health of women worldwide. The purpose of this research was to detemine protein and mRNA expression of synaptic vesicle 2 (SV2) isoforms A, B and C in breast cancer cell lines. Cultured cell lines MDA-MB-231, SKBR3, T47D were lysed and their protein and mRNA expression analyzed by real-time PCR and western blot technique, respectively. SV2A, B proteins were identified in non-tumor (MCF-10A) and tumor cell lines (MDA-MB-231 and T47D) while SV2C only was found in the T47D cell line. Furthermore, the genomic expression was consistent with protein expression for a such cell line, but in MDA-MB-231 there was no SV2B genomic expression, and the SV2C mRNA and protein were not found in the non tumoral cell line. These findings suggest a possible cellular transdifferentiation to neural character in breast cancer, of possible relevance to cancer development, and point to possible use of SV2 as molecular marker and a vehicle for cancer treatment with botulinum toxin.
Keywords
SV2A; SV2B; SV2C; breast-cancer; protein/gene expression; BoNTA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shi J, Anderson D, Lynch BA, et al (2011). Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. Biochem Soc Trans, 39, 1341-47   DOI
2 Simpson LL (1979). Studies on the mechanism of action of botulinum toxin. Adv Cytopharmacol, 3, 27-34
3 Zhang Q, Fan H, Shen J, Hoffman RM, Xing HR (2010). Human breast cancer cell lines co-express neuronal, epithelial, and melanocytic differentiation markers in vitro and in vivo. PLoS One, 5,9712   DOI
4 Zhenzhen Z, De'an T, Limin X, Wei Y, Min L (2012). New Candidate Tumor-Suppressor Gene KLF6 and its Splice Variant KLF6 SV2 Counterbalancing Expression in Primary Hepatocarcinoma. Hepatogastroenterology, 59, 473-76
5 Ahnert-Hilger G, Kutay U, Chahoud I, Rapoport T, Wiedenmann B (1996) Synaptobrevin is essential for secretion but not for the development of synaptic processes. Eur J Cell Biol 70, 1-11   DOI
6 Arnon SS, Schechter R, Inglesby TV, et al (2001). Botulinum toxin as a biological weapon: medical and public health management. JAMA, 285, 1059-70   DOI   ScienceOn
7 Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH (1994). Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci, 14, 5223-35
8 Bajjalieh SM, Peterson K, Linial M, Scheller RH (1993). Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A, 90, 2150-54   DOI
9 Blum FC, Chen C, Kroken AR, Barbieri JT (2012). Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 80, 1662-69   DOI
10 Bumming P, Nilsson O, Ahlman H, et al (2007). Gastrointestinal stromal tumors regularly express synaptic vesicle proteins: evidence of a neuroendocrine phenotype. Endocr Relat Cancer 14, 853-63   DOI
11 Coelho A, Dinis P, Pinto R, et al (2010). Distribution of the high-affinity binding site and intracellular target of botulinum toxin type A in the human bladder. Eur Urol 57, 884-90   DOI
12 Chan DA, Giaccia AJ (2007). Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev, 26, 333-39   DOI
13 Chancellor MB, Fowler CJ, Apostolidis A, et al (2008). Drug Insight: biological effects of botulinum toxin A in the lower urinary tract. Nat Clin Pract Urol, 5, 319-28
14 Choi J, Hwang YK, Choi YJ, et al (2007). Neuronal apoptosis inhibitory protein is overexpressed in patients with unfavorable prognostic factors in breast cancer. J Korean Med Sci, 22, 17-23   DOI
15 de Groot M, Aronica E, Heimans JJ, Reijneveld JC (2011). Synaptic vesicle protein 2A predicts response to levetiracetam in patients with glioma. Neurology, 77, 532-39   DOI
16 de Groot M, Toering ST, Boer K, et al (2010). Expression of synaptic vesicle protein 2A in epilepsy-associated brain tumors and in the peritumoral cortex. Neuro Oncol, 12: 265-73   DOI
17 Dong M, Yeh F, Tepp WH, et al (2006). SV2 is the protein receptor for botulinum neurotoxin A. Science, 312, 592-96   DOI
18 Gillies RJ, Gatenby RA (2007) Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev, 26, 311-17   DOI
19 Gronberg M, Amini RM, Stridsberg M, Janson ET, Saras J (2010). Neuroendocrine markers are expressed in human mammary glands. Regul Pept, 160, 68-74   DOI
20 Hanoun N, Bureau C, Diab T, et al (2010). The SV2 variant of KLF6 is down-regulated in hepatocellular carcinoma and displays anti-proliferative and pro-apoptotic functions. J Hepatol 53, 880-88   DOI
21 Jakobsen AM, Ahlman H, Wangberg B, et al (2002). Expression of synaptic vesicle protein 2 (SV2) in neuroendocrine tumours of the gastrointestinal tract and pancreas. J Pathol, 196, 44-50   DOI
22 Li Q, Johansson H, Grimelius L (1999). Innervation of human adrenal gland and adrenal cortical lesions. Virchows Arch, 435, 580-89   DOI
23 Janz R, Hofmann K, Sudhof TC (1998). SVOP, an evolutionarily conserved synaptic vesicle protein, suggests novel transport functions of synaptic vesicles. J Neurosci, 18, 9269-81
24 Janz R, Sudhof TC (1999). SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience, 94, 1279-90   DOI
25 Karsenty G, Rocha J, Chevalier S, et al (2009). Botulinum toxin type A inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo. Prostate, 69, 1143-50   DOI
26 Lukashev D, Ohta A, Sitkovsky M (2007). Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev, 26, 273-79   DOI
27 McPherson K, Steel CM, Dixon JM (2000). ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ 321, 624-28   DOI
28 Montal M (2010). Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem, 79, 591-617   DOI
29 Nilsson O, Jakobsen AM, Kolby L, Bernhardt P, Forssell- Aronsson E, Ahlman H (2004). Importance of vesicle proteins in the diagnosis and treatment of neuroendocrine tumors. Ann N Y Acad Sci, 1014, 280-83   DOI
30 Portela-Gomes GM, Lukinius A, Grimelius L (2000). Synaptic vesicle protein 2, A new neuroendocrine cell marker. Am J Pathol, 157, 1299-1309   DOI
31 Schiavo G, Matteoli M, Montecucco C (2000). Neurotoxins affecting neuroexocytosis. Physiol Rev, 80, 717-66