음향 이벤트 인식은 다수의 음향 이벤트가 발생하는 환경에서 이를 인식하고 각각의 발생과 소멸 시점을 판단하는 기술로써 인간의 청각적 인지 특성을 모델화하는 연구다. 음향 장면 및 이벤트 인식 연구 그룹인 DCASE는 연구자들의 참여 유도와 더불어 음향 인식 연구의 활성화를 위해 챌린지를 진행하고 있다. 그러나 DCASE 챌린지에서 제공하는 데이터 세트는 이미지 인식 분야의 대표적인 데이터 세트인 이미지넷에 비해 상대적으로 작은 규모이며, 이 외에 공개된 음향 데이터 세트는 많지 않아 알고리즘 개발에 어려움이 있다. 본 연구에서는 음향 이벤트 인식 기술 개발을 위해 실내외에서 발생할 수 있는 이벤트를 정의하고 수집을 진행하였으며, 보다 큰 규모의 데이터 세트를 확보하였다. 또한, 인식 성능 개선을 위해 음향 이벤트 존재 여부를 판단하는 보조 신경망을 추가한 이중 CNN 구조의 알고리즘을 개발하였고, 2016년과 2017년의 DCASE 챌린지 기준 시스템과 성능 비교 실험을 진행하였다.
본 논문은 다수의 오토인코더 모델들을 이용한 잡음에 강인한 이미지 분류 시스템을 제안한다. 딥러닝 기술의 발달로 이미지 분류의 정확도는 점점 높아지고 있다. 하지만 입력 이미지가 잡음에 의해서 오염된 경우에는 이미지 분류 성능이 급격히 저하된다. 이미지에 첨가되는 잡음은 이미지의 생성 및 전송 과정에서 필연적으로 발생할 수밖에 없다. 따라서 실제 환경에서 이미지 분류기가 사용되기 위해서는 잡음에 대한 처리 및 대응이 반드시 필요하다. 한편 오토인코더는 입력값과 출력값이 유사하도록 학습되어지는 인공신경망 모델이다. 입력데이터가 학습데이터와 유사하다면 오토인코더의 출력데이터와 입력데이터 사이의 오차는 작을 것이다. 하지만 입력 데이터가 학습데이터와 유사성이 없다면 오토인코더의 출력데이터와 입력데이터 사이의 오차는 클 것이다. 제안하는 시스템은 오토인코더의 입력데이터와 출력데이터 사이의 관계를 이용한다. 제안하는 시스템의 이미지 분류 절차는 2단계로 구성된다. 1단계에서 분류 가능성이 가장 높은 클래스 2개를 선정하고 이들 클래스의 분류 가능성이 서로 유사하면 2단계에서 추가적인 분류 절차를 거친다. 제안하는 시스템의 성능 분석을 위해 가우시안 잡음으로 오염된 MNIST 데이터셋을 대상으로 분류 정확도를 실험하였다. 실험 결과 잡음 환경에서 제안하는 시스템이 CNN(Convolutional Neural Network) 기반의 분류 기법에 비해 높은 정확도를 나타냄을 확인하였다.
Purpose - Every company studies how to attract and retain new customers to increase competitiveness and profitability. Companies establish strategies to attract customers, secure competitive advantage and generate revenue. Businesses are looking for newer and better ways to differentiate themselves in the marketplace. One of the requirements for service differentiation is to make it a prerequisite for an engaging customer experience. Customer experience can be attained through service experience. Satisfaction determine whether to reuse the food service franchise. The purpose of this study is to investigate the effect of customer experience on the satisfaction and revisit intention of food service franchise. In this study, customer experience consists of three attributes such as service environment, food quality, and price fairness. Also, this study is to identify the importance of three service experience attributes of customer satisfaction and revisit intention using ANN (artificial neural network) analysis. Research design, data, methodology - The survey was conducted on customers who have visited franchise restaurants in one month in order to examine how service environment, food quality, and price fairness have been influenced customer satisfaction and revisit intention through online survey company (SM culture & contents). A total of 300 representative surveys were collected. Of those collected surveys, 26 were not used due to missing information, resulting in 274 as the final sample size. The sample size was more than 10 times more than the number of variables used in the structural model analysis. Results - The findings of this study are as follows: Service environment and price fairness have a significant effect on satisfaction. However, food quality did not have a significant effect on satisfaction. Finally, it was found that satisfaction had a significant effect on revisit intention. Meanwhile, according to the results of ANN analysis, satisfaction as a dependent variable was found to be the most important in male price fairness and service environment in female. Also, when the revisit intention is used as a dependent variable, both male and female price fairness are important. Also, when the intention to revisit is used as a dependent variable, both male and female price processes are important. Conclusions - First, a restaurant franchise enterprise needs to manage customer service experience. Customers should strive to eat and enjoy at a dining franchise store. Second, it is necessary to design a food service franchise shop as a customer-oriented service environment. Franchise companies need to improve the environment so that customers can use the store conveniently. Third, the restaurant franchise menu price needs to be cheaper than the alternative menu. The restaurant franchise menu needs to be constructed with a popular menu that can be used continuously by the customer, so that it can be set at a reasonable price.
CCTV영상과 날씨 정보를 이용하여 미세먼지 농도를 추정하는 기법을 제안하고, 이에 대한 실험을 진행하였다. CCTV영상에 대해서는 특정 지점을 포함하는 일부 영역 영상과, 전체 영역 영상을 가지고 합성곱 신경망 (CNN)기반의 딥러닝 기법을 적용하여 PM 지수를 추정하는 방법을 제안하였다. 추가로 딥러닝에 의해서 예측된 결과 값을 습도 및 풍속 두 가지 날씨 특성과 결합한 뒤, 학습 된 회귀 모델을 사용하여 수정된 미세먼지 지수를 계산하는 후처리 실험도 함께 진행하였다. 실험 결과, CCTV영상으로부터 미세먼지 지수 추정 값은 R2가 0.58~0.89를 나타내었고, 측정기가 설치된 일부 영역 영상과 전체 영역 영상을 함께 학습시킨 결과가 가장 우수하였다. 기상변수를 이용한 후처리 적용결과는 실험지역의 모든 경우에 대하여 항상 정확도 향상을 보여주진 않았다.
인공신경망의 계층의 깊이가 깊어지고 입력으로 사용되는 데이터 차원이 증가됨에 신경망의 학습 및 인식에 있어서 많은 연산을 고속으로 요구하는 고연산의 문제가 발생한다. 따라서 본 논문에서는 신경망 입력 데이터의 차원을 감소시키기 위한 데이터 차원 감소 방법을 제안한다. 제안하는 선분 특징 분석(Line-segment Feature Analysis; LFA) 알고리즘은 한 영상 내에 존재하는 객체의 선분(Line-segment) 특징을 분석하기 위하여 메디안 필터(median filter)를 사용한 기울기 기반의 윤곽선 검출 알고리즘을 적용한다. 추출된 윤곽 영상은 [0, 1, 2, 4, 8, 16, 32, 64, 128]의 계수 값으로 구성된 3×3 또는 5×5 크기의 검출 필터를 이용하여 8가지 선분의 종류에 상응하는 고유값을 계산한다. 각각의 검출필터로 계산된 고유값으로부터 동일한 반응값을 누적하여 두 개의 1차원의 256 크기의 데이터를 생성하고 두 가지 데이터 요소를 합산하여 LFA256 데이터를, 두 데이터를 합병하여 512 크기의 LAF512 데이터를 생성한다. 제안한 LFA 알고리즘의 성능평가는 필기체 숫자 인식을 위한 데이터 차원 감소를 목적으로 PCA 기법과 AlexNet 모델을 이용하여 비교 실험한 결과 LFA256과 LFA512가 각각 98.7%와 99%의 인식 성능을 보였다.
연속파 레이다는 카메라나 라이다와 같은 센서에 비해서 안정성과 정확성이 보장된다는 장점이 있다. 또한 이진 신경망은 다른 딥러닝 기술에 비해서 메모리 사용량과 연산 복잡도를 크게 줄일 수 있는 특징이 있다. 따라서 본 논문에서는 연속파 레이다와 이진 신경망 기반 사람 식별 및 동작 분류 시스템을 제안한다. 연속파 레이다 센서를 통해 수신된 신호를 단시간 푸리에 변환함으로써 스펙트로그램을 생성한다. 이 스펙트로그램을 기반으로 레이다를 향해 사람이 다가오는지 감지하는 알고리즘을 제안한다. 더불어, 최적화된 이진 신경망 모델을 설계하여 사람 식별 90.0%, 동작 분류 98.3%의 우수한 정확도를 지원할 수 있음을 확인하였다. 이진 신경망 연산을 가속하기 위해 FPGA (field programmable gate array)를 이용하여 이진 신경망 연산에 대한 하드웨어 가속기를 설계하였다. 해당 가속기는 1,030개의 로직, 836개의 레지스터, 334.906 Kbit의 블록 메모리를 사용하여 구현되었고, 추론에서 결과 전송까지 총 연산 시간이 6 ms로 실시간 동작이 가능함을 확인하였다.
지진이 발생한 후 구조물의 안전성을 평가하기 위해 모든 교량 및 건축물에 지진가속도 및 변위를 계측하는 유지관리시스템을 구축하기는 효율적이지 않아, 이를 유지관리하기 위해서는 현장조사가 시행되며 조사범위가 넓은 경우 많은 시간이 소요된다. 그로 인해 2차 피해가 발생할 우려가 있으므로 신속한 개별 구조물의 안전성을 추정할 필요가 있다. 구조물의 지진 손상은 구조물에 인가된 지진력 정보와 구조해석모델을 이용하여 위험도평가 해석을 통해 예측할 수 있다. 이를 위해 지진 발생 시 임의위치에서 발생한 지진력을 추정할 필요가 있다. 본 연구에서는 국내 지진계측 기록과 선형추정방법 및 인공신경망 학습 방법을 활용한 임의위치의 지반 응답스펙트럼 및 가속도시간이력을 추정하는 방법들을 제안하고 적용성을 평가하였다. 선형추정방법의 경우 추정에 사용되는 인근 관측소의 위치가 가까울 경우 오차가 적었지만 멀어질 경우 오차가 크게 증가하였다. 인공신경망 학습 방법의 경우 동일한 조건에서 더 낮은 수준의 오차로 추정할 수 있었다.
초단기 강수예측 시스템은 단시간 발생하는 집중호우와 같은 위험기상에 대응하기 위해 사회·경제적으로 중요하다. 최근 국내·외에서 심층신경망을 활용한 초단기 강수예측 연구가 활발히 진행되고 있다. 심층신경망을 이용한 강수예측 모델은 훈련 데이터를 만들 때 기상데이터의 구조와 종류가 복잡하고 방대하므로 기상학적 이해를 바탕으로 복잡한 전처리 과정이 필요하다. 또한, 비선형적인 패턴의 강수 현상을 예측하기 위하여 기상의 상호작용에 대한 이해를 바탕으로 입력 데이터를 구성해야 한다. 따라서 본 연구에서는 다음과 같은 접근법을 제안하고자 한다. i) 기상레이더 합성 강수장과 강수발달에 영향을 줄 수 있는 주요 인자(레이더, 지형, 온도, 등)를 훈련 데이터 구축을 위해 패턴 분석에 적합한 형태로 정제하고 이를 구조화하여 통합한다. ii) 합성곱 신경망과 합성곱 장단기 기억 신경망을 접목하여 초단기 예측 강수장을 산출한다. 2020년 강수 사례를 이용하여 제안한 모델의 정확성을 검증하였다. 제안한 모델은 비선형적인 패턴의 강수 현상을 잘 모의하였고, 강수의 규모 및 강도에 대한 예측성능이 향상되었다. 이는 강수를 동반한 초단기 위험기상의 방재에 활용할 수 있을 것으로 기대된다.
빅데이터 시대를 맞이하여 인공지능 분야는 괄목할만한 성장을 보이고 있으며 특히 딥러닝에 의한 이미지 분류 학습방법이 중요한 영역으로 자리하고 있다. 이미지 분류에서 많이 사용되어 온 CNN의 성능을 더욱 개선하기 위해 다양한 연구가 활발하게 진행되었는데, 이 중에서 대표적인 방법이 CRNN(Convolutional Recurrent Neural Network) 알고리즘이다. CRNN 알고리즘은 이미지 분류를 위한 CNN과 시계열적 요소를 인식하기 위한 RNN의 조합으로 구성되는데, CRNN의 RNN영역에서 사용하는 입력값은 학습 대상의 이미지를 합성곱과 풀링 기법을 적용하여 추출된 결과물을 flatten한 값이고, 이 입력값들은 이미지 내 동일 위상에 있는 픽셀값들이 서로 다른 순서로 나타나기 때문에, RNN에서 의도한 이미지 내 배열 순서를 제대로 학습하기 어렵다는 한계점을 지닌다. 따라서 본 연구는 인코더와 디코더의 개념을 응용한 CNN과 RNN의 새로운 하이브리드 방법을 제안하여, 이미지 분류 성능을 향상시키는 것을 목적으로 하였다. 본 연구에서는 다양한 알고리즘 비교 실험을 통해, 새로운 하이브리드 방법의 효과성을 검증하였다. 본 연구는 인코더와 디코더 개념의 적용 가능성을 넓히고, 제안한 방법이 기존 하이브리드 방법에 비해, 복잡도가 크게 증가하지 않아 모델 학습 시간과 인프라 구축 비용 측면에서 이점을 있다는 점에서 학문적 시사점을 가진다. 또한, 정확한 이미지 분류가 필요한 다양한 분야에서 제공되는 서비스의 품질을 높일 수 있는 가능성을 제시하였다는 점에서 실무적 시사점을 가진다.
본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.