• Title/Summary/Keyword: neural network model

검색결과 4,538건 처리시간 0.031초

낙동강유역에서 신경망 모델을 이용한 강우예측에 관한 연구 - 다변량 모델과의 비교 - (A Study on the Rainfall Forecasting Using Neural Network Model in Nakdong River Basin - A Comparison with Multivariate Model-)

  • 조현경;이증석
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.51-59
    • /
    • 1999
  • This study aims at the development of the techniques for the rainfall forecasting in river basins by applying neural network theory and compared with results of Multivariate Model (MVM). This study forecasts rainfall and compares with a observed values in the San Chung gauging stations of Nakdong river basin for the rainfall forecasting of river basin by proposed Neural Network Model(NNM). For it, a multi-layer Neural Network is constructed to forecast rainfall. The neural network learns continuous-valued input and output data. The result of rainfall forecasting by the Neural Network Model is superior to the results of Multivariate Model for rainfall forecasting in the river basin. So I think that the Neural Network Model is able to be much more reliable in the rainfall forecasting.

  • PDF

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • 오경주
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

An Integrated Approach Using Change-Point Detection and Artificial neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.235-241
    • /
    • 2000
  • This article suggests integrated neural network models for the interest rate forecasting using change point detection. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in interest rate forecasting. the proposed models consist of three stages. The first stage is to detect successive change points in interest rate dataset. The second stage is to forecast change-point group with data mining classifiers. The final stage is to forecast the desired output with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. This article is then to examine the predictability of integrated neural network models for interest rate forecasting using change-point detection.

  • PDF

신경망 모형을 이용한 홍수유출 예측시스템의 재발 (A Development of System for Flood Runoff Forecasting using Neural Network Model)

  • 안상진;전계원
    • 한국수자원학회논문집
    • /
    • 제37권9호
    • /
    • pp.771-780
    • /
    • 2004
  • 본 논문에서는 신경망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 홍수유출 예측을 위한 신경망 모형을 공주, 부여지점에 적용하였으며, 신경망 모형을 입력층, 은닉층, 출력층으로 구성하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시 신경망 모형이 실시간 홍수량 예측에 적합한 모형으로 선정되었다. 신경망 모형은 Web 상에서 사용이 가능하게 변환하여 홍수유출 예측시스템의 기본모형으로 개발되었다. Web 기반 모형으로 개발된 신경망 모형을 서버에 탑재하고 금강수계의 본류와 주요 지점에 적용하여 Web 상에서 개발된 모형의 적용성을 검증하였다.

최적제어와 신경회로망을 이용한 능동형 현가장치 제어 (Active Suspension System Control Using Optimal Control & Neural Network)

  • 김일영;정길도;이창구
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

효율적인 신경망 부싱모델을 위한 신경망 구성 최적화 (Optimization of Neural Network Structure for the Efficient Bushing Model)

  • 이승규;김광석;손정현
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

Correlation of Liquid-Liquid Equilibrium of Four Binary Hydrocarbon-Water Systems, Using an Improved Artificial Neural Network Model

  • Lv, Hui-Chao;Shen, Yan-Hong
    • 대한화학회지
    • /
    • 제57권3호
    • /
    • pp.370-376
    • /
    • 2013
  • A back propagation artificial neural network model with one hidden layer is established to correlate the liquid-liquid equilibrium data of hydrocarbon-water systems. The model has four inputs and two outputs. The network is systematically trained with 48 data points in the range of 283.15 to 405.37K. Statistical analyses show that the optimised neural network model can yield excellent agreement with experimental data(the average absolute deviations equal to 0.037% and 0.0012% for the correlated mole fractions of hydrocarbon in two coexisting liquid phases respectively). The comparison in terms of average absolute deviation between the correlated mole fractions for each binary system and literature results indicates that the artificial neural network model gives far better results. This study also shows that artificial neural network model could be developed for the phase equilibria for a family of hydrocarbon-water binaries.

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.