• Title/Summary/Keyword: neural network methods

Search Result 1,945, Processing Time 0.034 seconds

Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification (불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발)

  • 문현구;이철욱
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF

A Efficient Rule Extraction Method Using Hidden Unit Clarification in Trained Neural Network (인공 신경망에서 은닉 유닛 명확화를 이용한 효율적인 규칙추출 방법)

  • Lee, Hurn-joo;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Recently artificial neural networks have shown excellent performance in various fields. However, there is a problem that it is difficult for a person to understand what is the knowledge that artificial neural network trained. One of the methods to solve these problems is an algorithm for extracting rules from trained neural network. In this paper, we extracted rules from artificial neural networks using ordered-attribute search(OAS) algorithm, which is one of the methods of extracting rules, and analyzed result to improve extracted rules. As a result, we have found that the distribution of output values of the hidden layer unit affects the accuracy of rules extracted by using OAS algorithm, and it is suggested that efficient rules can be extracted by binarizing hidden layer output values using hidden unit clarification.

Development of Classification System for Thermal Comfort Behavior of Pigs by Image Processing and Neural Network (영상처리와 인공신경망을 이용한 돼지의 체온조절행동 분류 시스템 개발)

  • 장동일;임영일;장홍희
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-438
    • /
    • 1999
  • The environmental control based on interactive thermoregulatory behavior for swine production has many advantages over the conventional temperature-based control methods. Therefore, this study was conducted to compare various feature selection methods using postural images of growing pigs under various environmental conditions. A color CCD camera was used to capture the behavioral images which were then modified to binary images. The binary images were processed by thresholding, edge detection, and thinning techniques to separate the pigs from their background. Following feature were used for the input patterns to the neural network ; \circled1 perimeter, \circled2 area, \circled3 Fourier coefficients (5$\times$5), \circled4 combination of (\circled1 + \circled2), \circled5 combination of (\circled1 + \circled3), \circled6 combination of (\circled2 + \circled3), and \circled7 combination of (\circled1 + \circled2 + \circled3). Using the above each input pattern, the neural network could classify training images with the success rates of 96%, 96%, 96%, 100%, 100%, 96%, 100%, and testing images with those of 88%, 86%, 93%, 96%, 91%, 90%, 98%, respectively. Thus, the combination of perimeter, area and Fourier coefficients of the thinning images as neural network features gave the best performance (98%) in the behavioral classification.

  • PDF

Face Recognition Using Convolutional Neural Network and Stereo Images (Convolutional Neural Network와 Stereo Image를 이용한 얼굴 인식)

  • Ki, Cheol-min;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.359-362
    • /
    • 2016
  • Face is an information unique to each person such as Iris, fingerprints, etc,. Research on face recognition are in progress continuously from the past to the present. Through these research, various face recognition methods have appeared. Among these methods, there are face recognition algorithms using the face data composed in stereo. In this paper, Convolutional Neural Network with Stereo Images as input was used for face recognition. This method showed better performance than the result of stereo face recognition using PCA that is used frequently in face recognition.

  • PDF

A Sound Interpolation Method Using Deep Neural Network for Virtual Reality Sound (가상현실 음향을 위한 심층신경망 기반 사운드 보간 기법)

  • Choi, Jaegyu;Choi, Seung Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.227-233
    • /
    • 2019
  • In this paper, we propose a deep neural network-based sound interpolation method for realizing virtual reality sound. Through this method, sound between two points is generated by using acoustic signals obtained from two points. Sound interpolation can be performed by statistical methods such as arithmetic mean or geometric mean, but this is insufficient to reflect actual nonlinear acoustic characteristics. In order to solve this problem, in this study, the sound interpolation is performed by training the deep neural network based on the acoustic signals of the two points and the target point, and the experimental results show that the deep neural network-based sound interpolation method is superior to the statistical methods.

Machine Learning Based Keyphrase Extraction: Comparing Decision Trees, Naïve Bayes, and Artificial Neural Networks

  • Sarkar, Kamal;Nasipuri, Mita;Ghose, Suranjan
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.693-712
    • /
    • 2012
  • The paper presents three machine learning based keyphrase extraction methods that respectively use Decision Trees, Na$\ddot{i}$ve Bayes, and Artificial Neural Networks for keyphrase extraction. We consider keyphrases as being phrases that consist of one or more words and as representing the important concepts in a text document. The three machine learning based keyphrase extraction methods that we use for experimentation have been compared with a publicly available keyphrase extraction system called KEA. The experimental results show that the Neural Network based keyphrase extraction method outperforms two other keyphrase extraction methods that use the Decision Tree and Na$\ddot{i}$ve Bayes. The results also show that the Neural Network based method performs better than KEA.

Bankruptcy predictions for Korea medium-sized firms using neural networks and case based reasoning

  • Han, Ingoo;Park, Cheolsoo;Kim, Chulhong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.203-206
    • /
    • 1996
  • Prediction of firm bankruptcy have been extensively studied in accounting, as all stockholders in a firm have a vested interest in monitoring its financial performance. The objective of this paper is to develop the hybrid models for bankruptcy prediction. The proposed hybrid models are two phase. Phase one are (a) DA-assisted neural network, (b) Logit-assisted neural network, and (c) Genetic-assisted neural network. And, phase two are (a) DA-assisted Case based reasoning, and (b) Genetic-assisted Case based reasoning. In the variables selection, We are focusing on three alternative methods - linear discriminant analysis, logit analysis and genetic algorithms - that can be used empirically select predictors for hybrid model in bankruptcy prediction. Empirical results using Korean medium-sized firms data show that hybrid models are very promising neural network models and case based reasoning for bankruptcy prediction in terms of predictive accuracy and adaptability.

  • PDF

A Design of Hight Controller of helicopter Using Improved Neural Network (개선된 신경망을 이용한 헬리콥터 고도 제어기 설계)

  • Wang, Hyun-Min;Huh, Kyung-Moo;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.229-237
    • /
    • 2001
  • In this paper, we propose two design methods of neural networks controller for the height control of helicopter, one is the design of neural network controller having learning capability and the other is the design of more improved neural network controller. Through the simulation results, we show that the proposed controllers have controllers have enhanced control performance(rapid response, effectiveness and safety) than the typical neural networks controller in the height control of helicopter.

  • PDF

A Study on Power Quality Diagnosis System using Neural NetWorks (전기품질 진단 시스템 개발을 위한 인공 신경망 적용에 관한 연구)

  • Kim, Jin-Su;Kim, Young-Il;Kim, Kwang-Soon;Park, Gi-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1351-1359
    • /
    • 2007
  • In this paper, we have studied the power quality(PQ) diagnosis system with the two methods for PQ diagnosis. One to Apply a regulation value in compliance with mathematics calculation, and the other Automatic identification using Neural network algorithm. Neural network algorithm is used for an automatic diagnosis of the PQ. The regulation proposed by IEEE 1159 Working group is applied for the precision of the diagnosis. In order to divide accurate segmentation, the algorithm for a computer training used the back propagation out of several neural network algorithms. We have configured the proto-type sample by using Labview and a programmed Neural Networks Algorithm using with C. And arbitrary electric Signal generated by OMICRON Company's CMC 256-6 for an efficiency test.

The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network (신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구)

  • 金成柱;李宰炫;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF