• Title/Summary/Keyword: neural network learning

Search Result 4,177, Processing Time 0.031 seconds

Automatic Recognition System for Number Plate of Car using Multi Neural Network (다중 신경망을 이용한 차량 번호판의 자동인식 시스템)

  • Park, S.H.;Choi, G.J.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • This paper presents the automatic recognition system for car number plate. In our country, two types of number plate pattern is used. The one is old type of number plate, the other is new type of number plate. To recognize both new and old type number plates, the system must have flexibility. Therefore, in this paper, automatic recognition system is developed by use of the neural network for good adaptation, good generalization, and modulation. And because the number plate is made of three codes, the multi neural network consists of three networks. Neural network is teamed by GDR(Generalized Delta learning Rule) and it is verified the effectiveness of the method through experimental results.

  • PDF

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1179
    • /
    • 2003
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained learning data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

  • PDF

Improved Adaptive Neural Network Autopilot for Track-keeping Control of Ships: Design and Simulation

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.30 no.4
    • /
    • pp.259-265
    • /
    • 2006
  • This paper presents an improved adaptive neural network autopilot based on our previous study for track-keeping control of ships. The proposed optimal neural network controller can automatically adapt its learning rate and number of iterations. Firstly, the track-keeping control system of ships is described For the track-keeping control task, a way-point based guidance system is applied To improve the track-keeping ability, the off-track distance caused by external disturbances is considered in learning process of neural network controller. The simulations of track-keeping performance are presented under the influence of sea current and wind as well as measurement noise. The toolbox for track-keeping simulation on Mercator chart is also introduced.

Design and Implementation of the Quality Performance Improvement for Process System Using Neural Network (가공시스템에서 신경회로망을 이용한 품질의 성능 개선에 관한 설계 및 구현)

  • 문희근;김영탁;김수정;김관형;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.179-182
    • /
    • 2002
  • In this paper, this system makes use of the analog sensor and converts the feature of fish analog signal when sensor is operating with CPU(80C196KC). Then, After signal processing, this feature Is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error backpropagation is used as a learning algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long time when random initial weights are used, off-line learning Is induced to decrease the Progress time We confirmed this method has better performance than somewhat outdated machines.

Direct-band spread system for neural network with interference signal control (직접 대역 확산 시스템에서 신경망을 이용한 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1372-1377
    • /
    • 2013
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

Object Detection Model Using Attention Mechanism (주의 집중 기법을 활용한 객체 검출 모델)

  • Kim, Geun-Sik;Bae, Jung-Soo;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1581-1587
    • /
    • 2020
  • With the emergence of convolutional neural network in the field of machine learning, the model for solving image processing problems has seen rapid development. However, the computing resources required are also rising, making it difficult to learn from a typical environment. Attention mechanism is originally proposed to prevent the gradient vanishing problem of the recurrent neural network, but this can also be used in a direction favorable to learning of the convolutional neural network. In this paper, attention mechanism is applied to convolutional neural network, and the excellence of the proposed method is demonstrated through the comparison of learning time and performance difference at this time. The proposed model showed that both learning time and performance were superior in object detection based on YOLO compared to models without attention mechanism, and experimentally demonstrated that learning time could be significantly reduced. In addition, this is expected to increase accessibility to machine learning by end users.

A neural network architecture for dynamic control of robot manipulators

  • Ryu, Yeon-Sik;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1113-1119
    • /
    • 1989
  • Neural network control has many innovative potentials for intelligent adaptive control. Among many, it promises real time adaption, robustness, fault tolerance, and self-learning which can be achieved with little or no system models. In this paper, a dynamic robot controller has been developed based on a backpropagation neural network. It gradually learns the robot's dynamic properties through repetitive movements being initially trained with a PD controller. Its control performance has been tested on a simulated PUMA 560 demonstrating fast learning and convergence.

  • PDF

A self creating and organizing neural network (자기 분열 및 구조화 신경 회로망)

  • 최두일;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.768-772
    • /
    • 1991
  • The Self Creating and organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease with time. Self Creating and Organizing Neural Network (SCONN) decides automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF

Optical Implementation of Single-Layer Adaptive Neural Network for Multicategory Classification. (다영상 분류를 위한 단층 적응 신경회로망의 광학적 구현)

  • 이상훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.23-28
    • /
    • 1991
  • A single-layer neural network with 4$\times$4 input neurons and 4 output neurons is optically implemented. Holographic lenslet arrays are used for the e optical interconnection topology, a liquid crystal light valve(LCLV) is used for controlling optical interconection weights. Using a Perceptron learning rule, it classifics input patterns into 4 different categories. It is shown that the performance of the adaptive neural network depends on the learning rate, the correlation of input patterns, and the nonlinear characteristic properties of the liquid crystal light valve.

  • PDF

Speaker Identification using Incremental Neural Network and LPCC (Incremental Neural Network 과 LPCC을 이용한 화자인식)

  • 허광승;박창현;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.341-344
    • /
    • 2002
  • 음성은 화자들의 특징을 가지고 있다. 이 논문에서는 신경망에 기초한 Incremental Learning을 이용하여 화자인식시스템을 소개한다. 컴퓨터를 통하여 녹음된 문장들은 FFT를 거치면서 Frequency 영역으로 바뀌고, 모음들의 특징을 가지고 있는 Formant를 이용하여 모음들을 추출한다. 추출된 모음들은 LPC처리를 통하여 화자의 특성을 가지고 있는 Coefficient값들을 얻는다. LPCC과정과 Vector Quantization을 통해 10개의 특징 점들은 학습을 위한 Input으로 들어가고 화자 수에 따라 증가되는 Hidden Layer와 Output Layer들을 가지고 있는 신경망을 통해 화자인식을 수행한다.