• 제목/요약/키워드: neural network control

검색결과 2,584건 처리시간 0.032초

신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구 (Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network)

  • 김성수;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

불확실성이 있는 로봇 시스템의 역모델 학습에 의한 신경회로망 제어 (Neural network control by learning the inverse dynamics of uncertain robotic systems)

  • 김성우;이주장
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.88-93
    • /
    • 1995
  • This paper presents a study using neural networks in the design of the tracking controller of robotic systems. Our strategy is to put to use the available knowledge about the robot manipulator, such as estimation models, in the contoller design via the computed torque method, and then to add the neural network to control the remaining uncertainty. The neural network used here learns to provide the inverse dynamics of the plant uncertainty, and acts as an inverse controller. In the simulation study, we verify that the proposed neural network controller is robust not only to structured uncertainties, but also to unstructured uncertainties such as friction models.

  • PDF

퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어 (An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method)

  • 신행봉;김용태;조길수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

신경회로망 2 자유도 PID 제어기를 이용한 갠트리 크레인제어에 관한 연구 (A Study on Gantry Control using Neural Network Two Degree of PID Controller)

  • 최성욱;손주한;이진우;이영진;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.159-167
    • /
    • 2000
  • During the operation of crane system in the container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances and weight change. In this paper, we present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control. Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF

신경 회로망을 이용한 혼돈 비선형 시스템의 직접 적응 제어 (Direct Adaptive Control of Chaotic Nonlinear Systems Using a Feedforward Neural Network)

  • 김세민;최윤호;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.401-403
    • /
    • 1998
  • This paper describes the neural network control method for the identification and control of chaotic nonlinear dynamical systems effectively. In our control method, the controlled system is modeled by an unknown NARMA model, and a feedforward neural network is used for identifying the chaotic system. The control signals are directly obtained by minimizing the difference between a setpoint and the output of the neural network model. Since learning algorithm guarantees that the output of the neural network model approaches that of the actual system, it is shown that the control signals obtained can also make the real system output close to the setpoint.

  • PDF

신경회로망의 예측제어기를 이용한 보일러의 온도제어에 관한 연구 (On the Temperature Control of Boiler using Neural Network Predictive Controller)

  • 엄상희;이권순;배종일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.798-800
    • /
    • 1995
  • The neural network predictive controller(NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output(Neural Network Predictor) and the other one is for control the plant(Neural Network Controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and prediction error. The NNP forecasts the future output based upon the current control input and the estimated control output. The method is applied to the control of temperature in boiler systems. The proposed NNPC is compared with the other conventional control methods such as PID controller, neural network controller with specialized learning architecture, and one-step-ahead controller. The computer simulation and experimental results show that the proposed method has better performances than the other methods.

  • PDF

FNN에 의한 태양광 발전의 MPPT 제어 (MPPT Control of Photovoltaic by FNN)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1968-1975
    • /
    • 2009
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system.. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point(MPP) is accurately tracked.. The paper proposes a fuzzy neural network(FNN) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in fuzzy control and high adaptive control in neural network.. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In this paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

신경망을 이용한 PID 제어기 이득값 적용에 대한 수렴 속도 향상 (Convergence Progress about Applied Gain of PID Controller using Neural Networks)

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.89-91
    • /
    • 2004
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal is convergence speed progress about applied gain of PID controller using the neural networks.

  • PDF

A study on fuzzy-neural control of nonlinear system

  • Oh, Jae-Chul;Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.36-39
    • /
    • 1996
  • This paper proposes identification and control algorithm of nonlinear systems and the proposed fuzzy-neural network has following characteristics. The network is roughly divided into premise and consequence. The consequence function is nonlinear function which consists of three parameters and the membership function in the premise contains of two parameters. The parameters in premise and consequence are learned by the extended back-propagation algorithm which has a modified form of the generalized delta rule. Simulation results on the identification show that this method is more effective than that of Narendra [3]. The indirect fuzzy-neural control is made of the fuzzy-neural identification and controller. Result on the indirect fuzzy-neural control shows that the proposed fuzzy-neural network can be efficiently applied to nonlinear systems.

  • PDF