본 논문에서는 이동 로봇의 군집 제어를 위해 실시간 적응 신경 회로망 보상기를 갖는 PID 제어기를 제안한다. 전체 제어 시스템은 선도-추종 로봇 접근법에 의한 기구학 제어기와 이동 로봇의 동역학을 고려한 동적 제어기로 구성되어 있다. 동적 제어기는 PID 제어기에 동특성 변화를 보상하고 성능을 개선시키기 위해 실시간 학습 기능을 가진 신경 회로망 보상기로 구성하였다. 모의실험을 통해 원형 궤적과 직선 궤적에 대해 PID 제어기와 신경 회로망 보상기의 성능을 비교하였다. 이를 통해 실시간 학습 기능을 가진 신경 회로망 보상기가 PID 제어기의 성능을 향상시킴으로써 군집 제어에서 추종 로봇의 추종 성능을 향상시키는 것을 확인하였다.
In this paper, we proposed a recurrent time delayed neural network controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network controller.
Transactions on Control, Automation and Systems Engineering
/
제3권2호
/
pp.111-116
/
2001
A neural network compensator for stick-slip friction phenomena in meashartonics servo systems is practically proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensa-tor plays the role of canceling the effect of nonlinear slipping friction force. It works robustly and effectively in a real control system. This enables the mechatronics servo systems to provide more precise control in the digital computer. It was confirmed that the con-trol accuracy is improved near zero velocity and points of changing the moving direction through numerical simulation. However, asymptotic property on the steady state error of the normal operation points is guaranteed by the integral term of traditional velocity loop controller.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.141-144
/
2001
본 논문에서는 신경망제어기의 출력을 보상하는 퍼지보상기를 갖는 신경망제어기에 관하여 제안하였다. 학습이 완료된 신경망제어기를 사용하더라도 예상치 못한 외란으로 인해 플랜트의 출력이 좋지 못한 경우가 있는데, 이것을 적절하게 조절해 주기 위해 퍼지보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 플랜트의 역 모델 신경망을 학습시킨 결과를 이용하여 주 신경망의 가중치를 변경시킴으로서 원하는 플랜트의 동적 특성을 얻게 된다. 세안한 제어기의 성능을 확인하기 위해 유압 서보시스템을 대상으로 DSP 프로세서를 사용하여 구현한 후 실험결과를 관찰하였다.
An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation
본 논문에서는 퍼지 보상기와 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 역 기구학 해를 구하는 방법을 제안한다. 가우시안 위치 함수를 활성화 함수로 사용하는 자기구성 신경회로망은 학습 시작시 1개의 은닉층 노드를 가지고 학습을 하면서 점차적으로 은닉층의 노드수를 증가시킴으로서 최적의 노드수를 얻을 수 있으며, 퍼지 보상기는 신경회로망의 양호한 학습비를 얻는다. 이와 같이 시스템을 구성하여 빠른 학습속도와 학습비의 개선 그리고 빠른 정상상태로의 수렴을 확인하였다.
본 논문에서는 신경망제어기의 출력을 보상하는 퍼지보상기를 갖는 리커런트 시간 지연 신경망(RTDNN) 제어기를 제안하였다. 학습이 완료된 신경망제어기를 사용하더라도 예상치 못한 외란으로 인해 플랜트의 출력이 좋지 못한 경우가 있는데, 이것을 적절하게 조절해 주기 위해 퍼지보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 플랜트의 역모델 신경망을 학습시킨 결과를 이용하여 주 신경망의 가중치를 변경시킴으로서 원하는 플랜트의 동적 특성을 얻게 된다. 2차 플랜트를 통한 모의실험 결과가 시간 지연 신경망(TDNN)제어기보다 더 좋은 응답 특성을 가짐을 확인할 수 있다. 제안한 제어기의 성능을 확인하기 위해 유압 서보시스템을 대상으로 DSP 프로세서를 사용하여 구현한 후 실험결과를 통하여 제안된 방법의 유용성을 보였다.
본 논문에서는 신경망제어기의 출력을 보상하는 퍼지보상기를 갖는 신경망-퍼지 하이브리드 제어기에 관하여 제안하였다. 학습이 완료된 신경망제어기를 사용하더라도 예상치 못한 외란으로 인해 플랜트의 출력이 좋지 못한 경우가 있는데, 이것을 적절하게 조절해 주기 위해 퍼지보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 플랜트의 역모델 신경망을 학습시킨 결과를 이용하여 주 신경망의 가중치를 변경시킴으로서 원하는 플랜트의 동적 특성을 얻게 된다. 2차 플랜트를 통한 모의실험 결과, 제안한 속도제어기가 신경망제어기보다 더 좋은 응답 특성을 가짐을 확인할 수 있다. 제안한 속도제어기의 성능을 확인하기 위해 유압 서보시스템을 대상으로 DSP 프로세서를 사용하여 구현한 후 실험 결과를 관찰하였다.
This paper proposes a new sliding mode controller combined with a multi-layer neural network using the error back propagation learning algorithm,, The network acts as a compensator of the conventional sliding mode controller to improve the control performance when initial assumptions of uncertainty bounds of system parameters are violated. The proposed controller can reduce th steady state error of conventional sliding mode controller with the boundary layer technique Computer simulation results show that the proposed method is effective to control dynamic systems with unexpectably large uncertainties.
This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.