• 제목/요약/키워드: neural network analysis

검색결과 2,593건 처리시간 0.032초

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권4호
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구 (A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market)

  • 남영우;이정민
    • 한국건설관리학회논문집
    • /
    • 제7권2호
    • /
    • pp.162-170
    • /
    • 2006
  • 부동산분야에서 전통적인 예측방법과 비교하여 보다 예측력을 높일 수 있는 방법을 찾으려 한다. 이에 앞서 신경망 모형의 적용가능성을 살펴보고, 기존의 연구를 토대로 한 신경망 이론의 정의, 구조, 장단점 등을 살펴본다. 구체적인 적용가능성을 확인하기 위하여 동일 데이터로 회귀분석과 신경망분석을 통한 모형을 구축하고, 예측정확도 측면에서 신경망모형의 적용 가능성을 검토한다. 부동산학에서 기존에 회귀분석에 치우쳐 있던 연구방법을 신경망분석까지 확장하고, 특히 예측정확도 측면에서 우수성이 검증되고 있는 신경망모형에 대한 연구를 활성화 하고자 하는데 본 연구의 목적이 있다. 연구방법으로는 분양가격에 영향을 주는 거시경제변수를 모형화 한다. 그 모형설정 후 회귀분석과 신경망분석으로 결과를 비교하여 보다 예측 정확도가 높은 것을 찾는다. 그 결과 신경망모형의 예측정확도가 상당히 높게 나타났다.

임분의 적정 시업체계분석을 위한 Neural Network 기법의 적용성 검토 (Performance Analysis of Neural Network on Determining The Optimal Stand Management Regimes)

  • 정주상
    • 한국산림과학회지
    • /
    • 제84권1호
    • /
    • pp.63-70
    • /
    • 1995
  • 이 논문에서는 neural network기법에 의해 소규모 임분의 시업계획을 분석하는 방법과 적용성을 평가하였다. 이를 위해서 적정한 임분시업체계를 계산하기 위한 neural network 모델을 개발하고, neural network의 구조체계와 network을 교육시키기 위해 요구되는 자료량의 측면에서 적용성을 검토하였다. 연구목적상 모델의 교육 및 비교분석에 요구되는 적정 시업체계에 대한 자료는 기존의 비선형 시업체계분석모델을 이용하였다. 이 시업체계 분석모델은 동령급 구조의 긴잎 소나무(Pinus palustris) 단순림의 적정시업체계를 분석하는 모델로서 전림수확생장함수에 의해 임분의 생장이 예측되는 모델이다. neural network 모델의 적용성 검토에 요구되는 분석자료들은 이 비선형 시업체계분석모델에 의해 제시된 긴잎소나무 임분의 적정 시업체제분석 결과들을 이용하였다.

  • PDF

A Fuzzy Neural Network Combining Wavelet Denoising and PCA for Sensor Signal Estimation

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.485-494
    • /
    • 2000
  • In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique . Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors.

  • PDF

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • 오경주
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

Simulator Output Knowledge Analysis Using Neural network Approach : A Broadand Network Desing Example

  • Kim, Gil-Jo;Park, Sung-Joo
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.12-12
    • /
    • 1994
  • Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.

  • PDF

음향충격법과 인공신경망에 의한 파란 검출 (Acoustic Impulse Method with Neural Network for Detection of Cracks in Eggshell)

  • 최완규;조한근;백진하;장영창
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.621-628
    • /
    • 1998
  • In order to develop an inspection algorithm for an automatic eggshell inspection system, acoustic impulse response with neural network method was studied. An improved error backpropagation algorithm was selected as a loaming rule of neural network, and three layer network was chosen for the neural network architecture. Acoustic signals in time domain and theirs power spectrum were studied as the input to the neural network. The classification feasibility and success rate were investigated in terms of statistical analysis and neural network approach. As a result, the success rate was 95% with the statistical model having five independent variables. Among the neural network models studied, the power spectrum of acoustic signal as the input with 64 input neurons and the two impact data showed the success rate of 95.5% which was slightly higher than of statistical analysis.

  • PDF

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.