• Title/Summary/Keyword: neural network (NN)

Search Result 373, Processing Time 0.026 seconds

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

Emotion Recognition Using Color and Pattern in Textile Images (컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템)

  • Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.154-161
    • /
    • 2008
  • In this paper, a novel method is proposed using color and pattern information for recognizing some emotions included in a fertile. Here we use 10 Kobayashi emotion to represent emotions. - { romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modem } The proposed system is composed of feature extraction and classification. To transform the subjective emotions as physical visual features, we extract representative colors and Patterns from textile. Here, the representative color prototypes are extracted by color quantization method, and patterns exacted by wavelet transform followed by statistical analysis. These exacted features are given as input to the neural network (NN)-based classifiers, which decides whether or not a textile had the corresponding emotion. When assessing the effectiveness of the proposed system with 389 textiles collected from various application domains such as interior, fashion, and artificial ones. The results showed that the proposed method has the precision of 100% and the recall of 99%, thereby it can be used in various textile industries.

System Trading using Case-based Reasoning based on Absolute Similarity Threshold and Genetic Algorithm (절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩)

  • Han, Hyun-Woong;Ahn, Hyun-Chul
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.63-90
    • /
    • 2017
  • Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.

Position Control and Stabilization of Inverted Pendulum using the Evolution Strategies (진화전략을 이용한 도립진자의 안정화 및 위치제어)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.71-80
    • /
    • 1996
  • This paper presents stabilization and position control of the Inverted-Pendulum system with cart by using Evolution Strategies that is one of the Evolutionary Computation and is effective in searching real number. The control input of the Inverted-Pendulum is the element of chromosome corresponding to the divided space of Inverted-Pendulum state variable x, x, 0, 0 . In general, the larger the length of the chromosome is, the longer the time of evolution to search optimal solution is. So in this paper, we propose a scheme that reduce the state space by half by taking the method, that is, converting only the sign of the control input without obtaining separately for the symmetrical sections of the Inverted-Pendulum to improve the speed of Evolution, and improved the efficiency of the entire system in addition to the improvement of the chromosome's evolution time by carrying out the chromosome's evolutional process by two steps one of which is that cart is positioned near the control point and the other cart is positioned far from that point. We propose another method that is Neural Network-Evolution StrategiedNN-ES) Controller. We verify the effectiveness of the proposed control scheme by computer simulations.

  • PDF

Automatic Facial Expression Recognition using Tree Structures for Human Computer Interaction (HCI를 위한 트리 구조 기반의 자동 얼굴 표정 인식)

  • Shin, Yun-Hee;Ju, Jin-Sun;Kim, Eun-Yi;Kurata, Takeshi;Jain, Anil K.;Park, Se-Hyun;Jung, Kee-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.60-68
    • /
    • 2007
  • In this paper, we propose an automatic facial expressions recognition system to analyze facial expressions (happiness, disgust, surprise and neutral) using tree structures based on heuristic rules. The facial region is first obtained using skin-color model and connected-component analysis (CCs). Thereafter the origins of user's eyes are localized using neural network (NN)-based texture classifier, then the facial features using some heuristics are localized. After detection of facial features, the facial expression recognition are performed using decision tree. To assess the validity of the proposed system, we tested the proposed system using 180 facial image in the MMI, JAFFE, VAK DB. The results show that our system have the accuracy of 93%.

  • PDF

Machine Learning Data Extension Way for Confirming Genuine of Trademark Image which is Rotated (회전한 상표 이미지의 진위 결정을 위한 기계 학습 데이터 확장 방법)

  • Gu, Bongen
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • For protecting copyright for trademark, convolutional neural network can be used to confirm genuine of trademark image. For this, repeated training one trademark image degrades the performance of machine learning because of overfitting problem. Therefore, this type of machine learning application generates training data in various way. But if genuine trademark image is rotated, this image is classified as not genuine trademark. In this paper, we propose the way for extending training data to confirm genuine of trademark image which is rotated. Our proposed way generates rotated image from genuine trademark image as training data. To show effectiveness of our proposed way, we use CNN machine learning model, and evaluate the accuracy with test image. From evaluation result, our way can be used to generate training data for machine learning application which confirms genuine of rotated trademark image.

  • PDF

Multi-dimensional Analysis and Prediction Model for Tourist Satisfaction

  • Shrestha, Deepanjal;Wenan, Tan;Gaudel, Bijay;Rajkarnikar, Neesha;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.480-502
    • /
    • 2022
  • This work assesses the degree of satisfaction tourists receive as final recipients in a tourism destination based on the fact that satisfied tourists can make a significant contribution to the growth and continuous improvement of a tourism business. The work considers Pokhara, the tourism capital of Nepal as a prefecture of study. A stratified sampling methodology with open-ended survey questions is used as a primary source of data for a sample size of 1019 for both international and domestic tourists. The data collected through a survey is processed using a data mining tool to perform multi-dimensional analysis to discover information patterns and visualize clusters. Further, supervised machine learning algorithms, kNN, Decision tree, Support vector machine, Random forest, Neural network, Naive Bayes, and Gradient boost are used to develop models for training and prediction purposes for the survey data. To find the best model for prediction purposes, different performance matrices are used to evaluate a model for performance, accuracy, and robustness. The best model is used in constructing a learning-enabled model for predicting tourists as satisfied, neutral, and unsatisfied visitors. This work is very important for tourism business personnel, government agencies, and tourism stakeholders to find information on tourist satisfaction and factors that influence it. Though this work was carried out for Pokhara city of Nepal, the study is equally relevant to any other tourism destination of similar nature.

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university (머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로)

  • So-Hyun Kim;Sung-Hyoun Cho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF