• 제목/요약/키워드: neural induction

검색결과 284건 처리시간 0.026초

유전알고리즘과 신경회로망을 이용한 선형유도전동기의 최적설계 (Optimum Design of a linear Induction Motor using Genetic Algorithm and Neural Network)

  • 김창업
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.29-35
    • /
    • 2003
  • 본 논문에서는 유전 알고리즘과 신경 회로망을 이용하여 선형유도전동기의 최적화 설계 방법에 대하여 연구하였다. 최대 추력 및 추력/중량을 목적함수로 하여 유전알고리즘, 신경회로망, 유전알고리즘과 신경회로망의 합성에 의한 방법으로 선형유도전동기의 최적설계를 한 결과 제안한 방법이 가장 우수함을 확인하였다.

인덕션 서보 모터 드라이브 시스템의 적응 고차 신경망 제어 (Adaptive High-Order Neural Network Control of Induction Servomotor Drive System)

  • 정진혁;박성민;황영호;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.903-905
    • /
    • 2003
  • In this paper, adaptive high-order neural network controller(AHONNC) is adopted to control of an induction servomotor. A algorithm is developed by combining compensation control and high-order neural networks. Moreover, an adaptive bound estimation algorithm was proposed to estimate the bound of approximation error. The weight of the high-order neural network can be online tuned in the sense of the Lyapunov stability theorem; thus, the stability of the closed-loop system can be guaranteed. Simulation results for induction servomotor drive system are shown to confirm the validity of the proposed controller.

  • PDF

MRAC방식의 유도전동기 속도제어에 관한 연구 (The Study of I.M. speed control using MRAC)

  • 전희종;김병진;정을기;박경옥;손희남
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1995년도 추계학술발표회논문집
    • /
    • pp.96-100
    • /
    • 1995
  • In this paper an induction motor control using fuzzy controller and neural network adptive observer is studied. The proposed observer which comprises neural network flux observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subjected to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations

  • PDF

신경망을 이용한 유도전동기-인버터 시스템의 효율향상 (Efficiency Improvement of Inverter Fed Induction Machine System Using Neural Network)

  • 류준형;이승철;최익;김광배;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1984-1986
    • /
    • 1998
  • This paper presents an optimal efficiency control for the inverter fed induction machine system using neural network. The motor speed and the load torque vary the efficiency characteristics of an induction motor. The optimal slip frequency has nonlinearity varied by the load torque as well as the motor speed. The induction motor is driven using the inverter system and the indirect vector control method which input is slip frequency. The neural network for estimating the optimal slip frequency has two input layer(the motor speed and the load torque) and one output layer(the optimal slip frequency that minimize the input power). Learning algorithm of the neural network is the back-propagation. Using the equivalent circuit including the nonlinearity of the induction motor, the loss reduction is analyzed quantitatively. Experimental results are shown noticeable power savings by proposed scheme in high speed and light load conditions.

  • PDF

인공 신경망에 의한 유도전동기의 센서리스 벡터제어 (Sensorless Vector Control of Induction Motor by Artificial Neural Network)

  • 정병진;고재섭;최정식;김도연;박기태;최정훈;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어 ((The Speed Control of Induction Motor using PD Controller and Neural Networks))

  • 양오
    • 전자공학회논문지SC
    • /
    • 제39권2호
    • /
    • pp.157-165
    • /
    • 2002
  • 본 논문에서는 PD 제어기와 신경회로망을 이용하여 3상 유도전동기의 속도제어 시스템을 구현하고자 한다. PD 제어기는 초기의 제어를 담당하며 신경회로망의 초기 학습을 담당한다. 또한, 신경회로망은 비선형 매핑능력과 학습능력이 탁월하기 때문에 제어기로 많이 사용되며 특히 전향경로 신경망은 구조가 매우 간단하기 때문에 본 논문에서는 이를 이용하여 유도전동기의 속도제어 시스템에 구현하였다. 신경회로망의 입력으로는 모터의 기준속도, 엔코더를 이용하여 측정한 모터의 실제 속도와 제어입력 전류를 이용하였고, 온라인 상태로 학습되도록 하였다. 본 논문에서 제안된 알고리즘의 타당성을 보이기 위해 기존에 널리 사용되었던 PI 제어기와 비교평가를 하였으며 시뮬레이션과 실험결과로부터 초기운전 상태에서는 PD 제어기가 주로 제어를 담당하지만 시간이 지남에 따라 신경회로망이 학습되어 신경회로망이 주 제어기가 됨을 확인하였다. 아울러, 제안된 하이브리드 제어기가 PI 제어기보다 우수하고 특히 부하변동과 같은 외란에 강인함을 알 수 있었으며, 정상상태 오차가 현저히 감소하여 정밀한 속도제어가 가능함을 확인하였다.

FNN 제어기를 이용한 유도전동기 드라이브의최대토크 제어 (Maximum Torque Control of Induction Motor Drive using FNN Controller)

  • 정동화;김종관;박기태;차영두
    • 조명전기설비학회논문지
    • /
    • 제19권8호
    • /
    • pp.33-39
    • /
    • 2005
  • 본 논문에서는 퍼지와 신경회로망을 혼합한 FNN(Fuzzy Neural Network) 제어기를 이용한 유도전동기의 최대 토크 제어를 제시한다. 먼저 유도전동기 드라이브의 고성능 제어를 위하여 FNN 제어기를 설계한다. 다음은 유도전동기의 최대토크 제어를 위하여 주어진 부하토크에서 고정자 전류를 최소화하여 단위 전류당 발생토크를 높인다. 본 논문에서 제시한 FNN을 이용한 최대토크 제어의 특성을 분석하고 그 결과를 제시한다.

새로운 유도전동기의 파라미터 추정에 관한 연구 (A Study on the New Parameter Estimation of Induction Motor)

  • 이동국;오세진;김종수;김경호;김성환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.47-48
    • /
    • 2005
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

  • PDF

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.

신경회로망 속도설정에 의한 유도전동기의 속도제어 (Speed Control of Induction Motor by Neural Network Speed Estimator)

  • 권양원;윤양웅;강학수;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2467-2469
    • /
    • 2000
  • In this paper, the DSP implementation of induction motor drive is presented on the viewpoint of the design and experiment. The speed estimation of control system for induction motor drive is designed on the base of neural network speed estimator. This neural network speed estimator is experimentally applied to the induction motor system. This system provides the satisfactory results.

  • PDF