• 제목/요약/키워드: neural genes

검색결과 107건 처리시간 0.02초

PVDF Nanofiber Scaffold Coated with a Vitronectin Peptide Facilitates the Neural Differentiation of Human Embryonic Stem Cells

  • Jeon, Byeong-Min;Yeon, Gyu-Bum;Goo, Hui-Gwan;Lee, Kyung Eun;Kim, Dae-Sung
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권2호
    • /
    • pp.135-147
    • /
    • 2020
  • Polyvinylidene fluoride (PVDF) is a stable and biocompatible material that has been broadly used in biomedical applications. Due to its piezoelectric property, the electrospun nanofiber of PVDF has been used to culture electroactive cells, such as osteocytes and cardiomyocytes. Here, taking advantage of the piezoelectric property of PVDF, we have fabricated a PVDF nanofiber scaffolds using an electrospinning technique for differentiating human embryonic stem cells (hESCs) into neural precursors (NPs). Surface coating with a peptide derived from vitronectin enables hESCs to firmly adhere onto the nanofiber scaffolds and differentiate into NPs under dual-SMAD inhibition. Our nanofiber scaffolds supported the differentiation of hESCs into SOX1-positive NPs more significantly than Matrigel. The NPs generated on the nanofiber scaffolds could give rise to neurons, astrocytes, and oligodendrocyte precursors. Furthermore, comparative transcriptome analysis revealed the variable expressions of 27 genes in the nanofiber scaffold groups, several of which are highly related to the biological processes required for neural differentiation. These results suggest that a PVDF nanofiber scaffold coated with a vitronectin peptide can serve as a highly efficient and defined culture platform for the neural differentiation of hESCs.

세로토닌 수송체와 기분장애 (5-HT Transporter and Mood Disorder)

  • 이민수
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.220-225
    • /
    • 2001
  • As numbers of serotonin's function are so many, studies of serotonin are numerous nowadays. In the beginning, concentration of metabolites such as 5-HIAA was a key issue, but recent studies have been challenged for serotonin receptor genes and their relation to mood disoder. Serotonin transporter(5-HTT) gene is a strong candidate gene of mood disoder for following reason. Serotonin transporter is a key protein in the serotonin pathway as it regulate the concentration of serotonin in the synaptic clept and essential pathophysiology of depression is dysregulation of 5-HTT so that all antidepressants have effect of 5-HTT antagonist. The decrease of 5-HTT in the platelet and in brain of the depressive patients is much consistent results in the studies of the pathophysiology of mood disorder till now. By this, we will be able to develop simple and easy marker for diagnosis, type, and treatment monitoring of depression. Many psychiatrists have sought the independent genes in relation to depression or schizophrenia. Obviously, the hereditary vulnerability contributes to etiology of mood disorders, but it is difficult to discriminate the independent genes because of many environmental factors. Moreover, in the hereditarily complex diseases such as mood disorder, the only vulnerability of gene can not sufficiently explain the etiology. In the future, to exclude the role of the gene-environmental interaction, the methods such as gene transfer can be considered. In the opposite direction, by using the gene destruction method, the role of target genes can be examined. As yet the concept of the gene expression, neural plasticity, neurogenesis and etc, is the elementary stage. The development of this field will help to establish the treatment strategy of chronic and refractory mood disorders.

  • PDF

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon;Choi, Sang-Hwi;Lee, Dongjin R;Kim, Dae-Sung;Kim, Dong-Wook
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.110-118
    • /
    • 2018
  • The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.

배양한 흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)이 유전자 표현에 미치는 영향 (Effects of Scutellaria baicalensis GEORGI on Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells)

  • 정승현;신길조;이원철;김성배
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.324-336
    • /
    • 2004
  • Objectives : The purpose of this investigation is to evaluate the effects of Scutellaria baicalensis GEORGI on alteration in gene expression in a hypoxia model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in a Neurobasal medium containing B27 supplement. On 12 DIV, Scutellaria baicalensis GEORGI(20 ug/ml) was added to the culture media and left for 24 hrs. On 11 DIV, cells were given a hypoxic insult $(2%\;O_2/5%\;CO_2,\;37^{\circ}C,\;3\;hrs)$, returned to normoxia and cultured for another 24 hrs. Total RNA was prepared from Scutellaria baicalensis GEORGI-untreated (control) and -treated cultures and alteration in gene expression was analysed by microarray using rat 5K-TwinChips. Results : For most of the genes altered in expression, the Global M values were between -0.5 to +0.5. Among these, 1143 genes increased in their expression by more than Global M +0.1, while 1161 genes decreased by more than Global M -0.1. Effects on some of the genes whose functions are implicated in neural viability are as follows: 1) The expression of apoptosis-related genes such as Bad (Global M = 0.39), programmed cell death-2(Pdcd2) (Global M = 0.20) increased, while Purinergic receptor P2X(P2rxl) Global M = -0.22), Bc12-like1(Bc1211)(Global M = -0.19) decreased. 2) The expression of 'response to stress-related genes such as antioxidation-related AMP-activated protein kinase subunit gamma 1 gene (Prkag1) (Global M = 0.14), catalase gene (Global M = 0.14) and Heme Oxygenase(Hmoxl) increased. 3) The expression of Fos like antigen 2 (Fos12) expressed in neurons that survive ischemic insult increased (Global M = 0.97). Conclusions : these data suggest that Scutellaria baicalensis GEORGI increases the expression of antiapoptosis- and antioxidation- related genes in a way that can not yet be explained.

  • PDF

Potential Mechanisms of Benzyl Isothiocyanate Suppression of Invasion and Angiogenesis by the U87MG Human Glioma Cell Line

  • Zhu, Yu;Zhang, Ling;Zhang, Guo-Dong;Wang, Hong-Ou;Liu, Ming-Yan;Jiang, Yuan;Qi, Li-Sha;Li, Qi;Yang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8225-8228
    • /
    • 2014
  • Glioma is one of the most common tumors in China and chemotherapy is critical for its treatment. Recent studies showed that benzyl isothiocyanate (BITC) could inhibit the growth of glioma cells, but the mechanisms are not fully understood. This study explored the inhibitory effect of BITC on invasion and angiogenesis of U87MG human glioma cells in vitro and in vivo, as well as potential mechanisms. It was found that BITC could inhibit invasion and angiogenesis of human glioma U87MG cells by inducing cell cycle arrest at phase G2/M. It also was demonstrated that BITC decreased expression of cyclin B1, p21, MMP-2/9, VE-cadherin, CD44, CXCR4 and MTH1, the activity of the telomerase and $PKC{\zeta}$ pathway. Microarray analysis was thus useful to explore the potential target genes related to tumorigenic processes. BITC may play important roles in the inhibition of invasion and angiogenesis of human glioma cells.

A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

  • Zhuo, Min
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.259-271
    • /
    • 2007
  • Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권3호
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

Noonan syndrome and RASopathies: Clinical features, diagnosis and management

  • Lee, Beom Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Noonan syndrome (NS) and NS-related disorders (cardio-facio-cutaneous syndrome, Costello syndrome, NS with multiple lentigines, or LEOPARD [lentigines, ECG conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth and sensory neural deafness] syndrome) are collectively named as RASopathies. Clinical presentations are similar, featured with typical facial features, short stature, intellectual disability, ectodermal abnormalities, congenital heart diseases, chest & skeletal deformity and delayed puberty. During past decades, molecular etiologies of RASopathies have been growingly discovered. The functional perturbations of the RAS-mitogen-activated protein kinase pathway are resulted from the mutation of more than 20 genes (PTPN11, SOS1, RAF1, SHOC2, BRAF, KRAS, NRAS, HRAS, MEK1, MEK2, CBL, SOS2, RIT, RRAS, RASA2, SPRY1, LZTR1, MAP3K8, MYST4, A2ML1, RRAS2). The PTPN11 (40-50%), SOS1 (10-20%), RAF1 (3-17%), and RIT1 (5-9%) mutations are common in NS patients. In this review, the constellation of overlapping clinical features of RASopathies will be described based on genotype as well as their differential diagnostic points and management.

Using zebrafish as an animal model for studying rare neurological disorders: A human genetics perspective

  • Dilan Wellalage Don;Tae-Ik Choi;Tae-Yoon Kim;Kang-Han Lee;Yoonsung Lee;Cheol-Hee Kim
    • Journal of Genetic Medicine
    • /
    • 제21권1호
    • /
    • pp.6-13
    • /
    • 2024
  • Rare diseases are characterized by a low prevalence, which often means that patients with such diseases are undiagnosed and do not have effective treatment options. Neurodevelopmental and neurological disorders make up around 40% of rare diseases and in the past decade, there has been a surge in the identification of genes linked to these conditions. This has created the need for model organisms to reveal mechanisms and to assess therapeutic methods. Different model animals have been employed, like Caenorhabditis elegans, Drosophila, zebrafish, and mice, to investigate the rare neurological diseases and to identify the causative genes. While the zebrafish has become a popular animal model in the last decade, mainly for studying brain development, understanding neural circuits, and conducting chemical screens, the mouse has been a very well-known model for decades. This review explores the strengths and limitations of using zebrafish as a vertebrate animal model for rare neurological disorders, emphasizing the features that make this animal model promising for the research on these disorders.

우울증의 신경생물학 (Neurobiology of Depression)

  • 김영훈;이상경;이정구;김정익
    • 생물정신의학
    • /
    • 제6권1호
    • /
    • pp.3-11
    • /
    • 1999
  • At the beginning, researches on the biology of depression or affective illness have focused mainly on the receptor functions and neuroendocrine activities. And the studies of the past years did not break new theoretical background, but the recent advances in the research on the molecular mechanisms underlying neural communication and signal transduction do add some insights to many established ideas. This article will overview some of the more recent advances in the clinical researches of depression. Our major concerns to be presented here include the followings : (1) alterations in the post-synaptic neural transduction ; (2) changes in the neurons of hypothalamic neuropeptides ; (3) decreased peptidase enzyme activities ; (4) associations of hypothalamic-pituitary-adrenal axis abnormalities with serotonin neurotransmission ; (5) role of serotonin transporter ; (6) changes in the responsiveness of intracellular calcium ion levels ; (7) the inositol deficiency theory of lithium and depression ; (8) the transcription factors including immediate early genes ; (9) recent genetic studies in some families. This brief overview will suggest that changes in DNA occur during antidepressant therapy. These changes at the DNA level initiating a cascade of events underlying antidepressant modality will give us the insights on the molecular biological basis of the pathogenesis of depression and cues for a new class of antidepressants.

  • PDF