• 제목/요약/키워드: neural controller

검색결과 1,264건 처리시간 0.034초

Artificial Neural Network and Application in Temperature Control System

  • Sugisaka, Masanori;Liu, Zhijun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.260-264
    • /
    • 1998
  • In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.

  • PDF

오차 자기순환 신경회로망에 기초한 적응 PID제어기 (Adaptive PID controller based on error self-recurrent neural networks)

  • 이창구;신동용
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계 (The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot)

  • 한성현;이희섭
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

신경망을 이용한 적응제어기의 추적 성능 평가 (Tracking performance evaluation of adaptive controller using neural networks)

  • 최수열;박재형;박선국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1561-1564
    • /
    • 1997
  • In the study, simulation result was studied by connecting PID controller in series to the established Neural Networks Controller. Neural Network model is composed of two layers to evaluate tracking performance improvement. The reqular dynamic characteristics was also studied for the expected error to be minimized by using Widrow-Hoff delta rule. As a result of the study, We identified that tracking performance inprovement was developed more in case of connecting PID than Neural Network Contoller and that tracking plant parameter in 251 sample was approached rapidly case of time variable.

  • PDF

신경 회로망의 RLED 로봇 머너퓰레이터 추적 제어 (Neural Network Tracking Control of Rigid-tink Electrically-Driven Robot Manipulators)

  • 정재욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.74-74
    • /
    • 2000
  • This paper presents a neural network controller for a rigid-link electrically-driven robot. The proposed controller is designed in conjunction with three neural networks approximating for complicated nonlinear functions. Particularly, the fact, different from conventional schemes, is that the neural network based current observer is used. Therefore, no accurate measurement of the actuator driving current is required. In the proposed controller-observer scheme, the derived weight update rule guarantees the stability of closed-loop system in the sense of Lyapunov. The effectiveness and performance of the proposed method are demonstrated through computer simulation.

  • PDF

신경 회로망을 사용한 로보트 매니퓰레이터의 학습 제어 (Learning control of a robot manipulator using neural networks)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.30-35
    • /
    • 1990
  • Learning control of a robot manipulator is proposed using the backpropagation neural network. The learning controller is composed of both a linear feedback controller and a neural network-based feedforward controller. The stability analysis of the learning controller is presented. Three energy functions are selected in teaching the neural network controller : 1/2.SIGMA.vertical bar torque error vertical bar $^{2}$, 1/2.SIGMA..alpha. vertical bar position error vertical bar $^{2}$ + .betha. vertical bar velocity error vertical bar $^{2}$ + .gamma. vertical bar acceleration error vertical bar $^{2}$ and learning methods are presented. Simulation results show that the learning controller which is learned to minimize the third energy function performs better than the others in tracking problems. Some properties of the learning controller are discussed with simulation results.

  • PDF

온라인 적응 신경회로망을 이용한 지능형 제어기 설계방법 (A Design Method For An On-line Adaptive Neural Networks Based Intelligent Controller)

  • 김일중;구세완;최주엽;최익;김광배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1341-1343
    • /
    • 1996
  • This paper presents a design method for an on-line adaptive neural networks based intelligent controller. The proposed neural controller, assuming PID controller is initially presented, learns the equivalent behaviors of the existing PID controller initially and switches to take over the PID control system. Then, it executes on-line adaptation via evaluating its performance and minimizing user defined cost function constantly so that the optimal control can be achieved. The PID controller and the proposed neural controller are investigated and compared in computer simulation.

  • PDF

신경회로망을 이용한 대부하 표적지향 시스템 제어 (Control of a Heavy Load Pointing System Using Neural Networks)

  • 김병운;강이석
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.55-63
    • /
    • 2004
  • This paper presents neural network based controller using the feedback error loaming technique for a heavy load pointing system. Also the mathematical model was developed to analyze heavy load pointing system. The control scheme consists of a feedforward neural network controller and a fixed-gain feedback controller. This neural network controller is trained so as to make the output of the feedback controller zero. The proposed controller is compared with the conventional PI controller through simulations, and the results show that the pointing accuracy of the proposed control system are improved against the disturbance induced by vehicle running on the bump course.

웨이브렛 신경회로망을 이용한 비선형 적응 제어기 설계 (Design of Nonlinear Adaptive Controller using Wavelet Neural Network)

  • 정경권;김주웅;엄기환;정성부;김한웅
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.17-20
    • /
    • 2001
  • In this paper, we design a nonlinear adaptive controller using wavelet neural network. The method proposed in this paper performs for a nonlinear system with unknown parameters, identification with using a wavelet neural network, and then a nonlinear adaptive controller is designed with those identified informations. The advantage of the proposed control method is simple to design a controller for unknown nonlinear systems, because we use the identified informations and design parameters are positioned within a negative real part of s-plane. The simulation results showed the effectiveness of proposed controller design method.

  • PDF

유연성 로봇 링크의 위치제어를 위한 신경망 제어기의 설계 (The Design of Neural Networks Controller for Position Control of Flexible Robot Link)

  • 탁한호;이주원;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.121-124
    • /
    • 1997
  • In this paper, applications of self-recurrent neural networks based of adaptive controller to position control of flexible robot link are considered. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. Therefore, a comparative analysis was mode with linear controller through an simulation. The results are presented to illustrate the advantages and improved performance of the proposed position tracking controller over the conventional linear controller.

  • PDF