• 제목/요약/키워드: neural controller

검색결과 1,264건 처리시간 0.025초

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 제어기 설계 (Controller Design using PreFilter Type Chaotic Neural Networks Compensator)

  • 최운하;김상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.651-653
    • /
    • 1998
  • This thesis propose the prefilter type control strategies using modified chaotic neural networks #or the trajectory control of robotic manipulator. Since the structure of chaotic neural networks and neurons, chaotic neural networks can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis PUMA robot is designed by CNN. The CNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on- line learning and the performance is excellent. The CNN controller have much better controllability and shorter calculation time compared to the RNN controller. Another advantage of the proposed controller could be attached to conventional robot controller without hardware changes.

  • PDF

PD제어기와 신경망 제어기를 이용한 유도전동기의 속도제어 (Speed Control of Induction Motor using Neural Networks and PD controller)

  • 양오;김윤서
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2089-2091
    • /
    • 2001
  • In this paper, a hybrid controller that consists of a conventional PD controller and a neural network controller which adapts to various control conditions by online learning is used and a new learning algorithm of the neural networks is used to prevent weights of neural network from diverging. A conventional PI controller and the hybrid controller is applied to speed control of 3 phase induction motor. So in comparison with a PD controller, we prove superiority of hybrid controller by experiments.

  • PDF

PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어 ((The Speed Control of Induction Motor using PD Controller and Neural Networks))

  • 양오
    • 전자공학회논문지SC
    • /
    • 제39권2호
    • /
    • pp.157-165
    • /
    • 2002
  • 본 논문에서는 PD 제어기와 신경회로망을 이용하여 3상 유도전동기의 속도제어 시스템을 구현하고자 한다. PD 제어기는 초기의 제어를 담당하며 신경회로망의 초기 학습을 담당한다. 또한, 신경회로망은 비선형 매핑능력과 학습능력이 탁월하기 때문에 제어기로 많이 사용되며 특히 전향경로 신경망은 구조가 매우 간단하기 때문에 본 논문에서는 이를 이용하여 유도전동기의 속도제어 시스템에 구현하였다. 신경회로망의 입력으로는 모터의 기준속도, 엔코더를 이용하여 측정한 모터의 실제 속도와 제어입력 전류를 이용하였고, 온라인 상태로 학습되도록 하였다. 본 논문에서 제안된 알고리즘의 타당성을 보이기 위해 기존에 널리 사용되었던 PI 제어기와 비교평가를 하였으며 시뮬레이션과 실험결과로부터 초기운전 상태에서는 PD 제어기가 주로 제어를 담당하지만 시간이 지남에 따라 신경회로망이 학습되어 신경회로망이 주 제어기가 됨을 확인하였다. 아울러, 제안된 하이브리드 제어기가 PI 제어기보다 우수하고 특히 부하변동과 같은 외란에 강인함을 알 수 있었으며, 정상상태 오차가 현저히 감소하여 정밀한 속도제어가 가능함을 확인하였다.

퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 및 구현 (Design and Implementation of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator)

  • 이상윤;신위재
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.334-341
    • /
    • 2003
  • 본 논문에서는 신경망제어기의 출력을 보상하는 퍼지보상기를 갖는 리커런트 시간 지연 신경망(RTDNN) 제어기를 제안하였다. 학습이 완료된 신경망제어기를 사용하더라도 예상치 못한 외란으로 인해 플랜트의 출력이 좋지 못한 경우가 있는데, 이것을 적절하게 조절해 주기 위해 퍼지보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 플랜트의 역모델 신경망을 학습시킨 결과를 이용하여 주 신경망의 가중치를 변경시킴으로서 원하는 플랜트의 동적 특성을 얻게 된다. 2차 플랜트를 통한 모의실험 결과가 시간 지연 신경망(TDNN)제어기보다 더 좋은 응답 특성을 가짐을 확인할 수 있다. 제안한 제어기의 성능을 확인하기 위해 유압 서보시스템을 대상으로 DSP 프로세서를 사용하여 구현한 후 실험결과를 통하여 제안된 방법의 유용성을 보였다.

다층 신경회로망을 이용한 유연성 로보트팔의 위치제어 (Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network)

  • 김병섭;심귀보;이홍기;전홍태
    • 전자공학회논문지B
    • /
    • 제29B권1호
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

무인 전기자동차의 신경회로망 조향 제어기 개발 (Development of the Neural Network Steering Controller for Unmanned electric Vehicle)

  • 손석준;김태곤;김정희;류영재;김의선;임영철;이주상
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.281-286
    • /
    • 2000
  • This paper describes a lateral guidance system of an unmanned vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in the unmanned vehicle simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the learning pattern, learning itself, and the adequacy of the design controller. A computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. Good results were obtained. Also, the real unmanned electrical vehicle using neural network controller verified good results.

  • PDF

슬라이딩 모드와 Neural network 제어기를 이용한 Buck type DC-DC 컨버터의 출력전압제어 (The Output Voltage Control of Buck Type DC-DC Converter Using Sliding Mode and Neural Controller)

  • 황계호;남승식;김동희;배상준
    • 조명전기설비학회논문지
    • /
    • 제18권3호
    • /
    • pp.95-100
    • /
    • 2004
  • 최근, 비선형시스템인 DC-DC 컨버터의 출력전압제어를 위해서 많은 제어방법들이 연구되고 있으며, 본 논문은 Buck type DC-DC 컨버터에 슬라이딩 모드 제어기와 뉴럴 네트워크 제어기를 이용한 제어 알고리즘을 제시하였고, 또한 컨버터의 이론해석을 통한 이론특성과 Psim을 이용한 시뮬레이션특성, DSP(TMS320C32)를 이용한 실험특성을 비교 검토하여 제안한 방법의 유용성을 입증하였다. 기존의 히스테리시스 제어기를 이용한 제어방법과 제안한 슬라이딩 모드 제어기와 뉴럴 네트워크 제어기를 이용한 제어방법과 비교한 결과 제안한 제어기가 우수한 특성을 얻었으며, 향후, 다른 전력변환장치에 유용하게 적용될 것으로 생각된다.

신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기 (STPI Controller of IPMSM Drive using Neural Network)

  • 고재섭;최정식;정동화
    • 전자공학회논문지SC
    • /
    • 제44권2호
    • /
    • pp.24-31
    • /
    • 2007
  • 본 논문은 신경회로망을 이용한 IPMSM 드라이브의 자기동조 PI 제어기를 제시한다. 일반적으로 수치제어장치 처리는 고정된 이득값을 가진 PI 제어기를 이용한다. 고정된 이득값을 가진 PI 제어기는 어떠한 환경에서는 양호하게 동작할 수 도 있다. 고정된 이득값을 가진 PI 제어기의 강인성을 증가시키기 위하여 신경회로망을 기반으로한 새로운 방법인 STPI 제어기를 제시하였다. STPI 제어기는 속도, 부하토크, 관성과 같은 파라비터가 갑자기 변화하였을 때 오버슈트, 상승시간, 안정화시간을 최소화한다. 또한 본 논문에서는 신경회로망을 이용하여 속도를 제어하고 ANN 제어기를 이용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘 기법은 전동기 속도의 실시간 추정을 제시한다. IPMSM의 속도제어의 결과는 이득값 동조의 효용성을 보여준다. 그리고 STPI 제어기는 고정된 이득값을 가진 PI 제어기에 비하여 강인성 광범위한 운전영역 부하 왜란등에 대하여 우수한 성능을 나타낸다.

신경회로망을 이용한 비선형 시스템 제어의 실험적 연구 (Experimental Studies of neural Network Control Technique for Nonlinear Systems)

  • 정슬;임선빈
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

PID-신경망 제어기를 이용한 rotary inverted pendulum 제어 (Rotary inverted pendulum control using PID-neural network controller)

  • 선권석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.901-904
    • /
    • 1998
  • In this paper, we describes PID-neural network controller for the rotary inverted pendulum. PID control is applied to many fields but has some problems in nonlinear system due to a variation of parameter. So, we should desing the controller which is adjusted PI parameters by the neural network which is learned by backpropagation algorithm. And we show that on-line control is possible through the PID-neural network controller. The angle of the pendulum is controlled and then the position of the rotating arm is also controlled to maintain with in the set point. Measurement of the pendulum angle is obtained using a potentionmeter. The objective of the experiment is to design a PID-neural network control system that positions the arm as well as maintains the ivnerted pendulum vertical. Finally, we describe the actual experiment system and confirm the experimental results.

  • PDF