• 제목/요약/키워드: neural controller

검색결과 1,264건 처리시간 0.024초

신경회로망을 이용한 슬라이딩 모드 제어기의 설계 (Design of the Sliding Mode Controller using Neural Networks)

  • 이태성;양오;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.807-809
    • /
    • 1995
  • In this paper, a design of the sliding mode controller using neural networks is proposed. The overall control system consists of a neural network controller and a reaching mode control input. The neural network controller approximates the equivalent control on the sliding surface and reaching mode control input is used to bend the entire system trajectories toward the sliding surface. The proposed controller is applied to the position control of a DC servo motor.

  • PDF

다단 신경회로망 예측제어기 개발에 관한 연구 (A Study on Development of Multi-step Neural Network Predictive Controller)

  • 배근신;김진수;이영진;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.62-64
    • /
    • 1996
  • Neural network as a controller of a nonlinear system and a system identifier has been studied during the past few years. A well trained neural network identifier can be used as a system predictor. We proposed the method to design multi-step ahead predictor and multi-step predictive controller using neural network. We used the input and out put data of B system to train the NNP and used the forecasted approximat system output from NNP as B input of NNC. In this paper we used two-step ahead predictive controller to test B heating controll system and compared with PI controller.

  • PDF

신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가 (Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft)

  • 이기영;김병수
    • 한국항공운항학회지
    • /
    • 제21권3호
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

초고속 유도전동기 구동을 위한 신경회로망 제어기 설계 (Design of Neural Network Controllers for High Speed Induction Motor Drives)

  • 김윤호;이병순;성세진
    • 전력전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 1997
  • 초고속 전동기 구동 시스템을 위하여 간접 신경회로망 제어기를 제안하였다. 고속의 가변 전동기구동에서의 속도응답은 긴 정착시간과 높은 오버슈트의 영향에 있게 되므로 고성능을 위하여 신경회로망 제어기와 신경회로망 에뮬레이터로 구성된 제어기를 사용하였으며, 신경회로망 에뮬레이터는 고속 전동기의 정수와 특성을 동정하는데 사용하였고, 제어기의 학습은 접속강도가 백프로퍼게이션에 의해 조절되도록 하였다. 그리고 시뮬레이션과 실험을 통하여 제안된 시스템의 특성과 장점을 확인하였다.

  • PDF

신경회로망 PID 제어기를 이용한 이동로봇의 군집제어 (Formation Control of Mobile Robots using PID Controller with Neural Networks)

  • 김용백;박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1811-1817
    • /
    • 2014
  • 본 논문은 선도 로봇을 추종 로봇이 일정거리와 각도를 두고 추종하는 군집제어에서, 추종 로봇의 질량이 변할 경우, 신경회로망을 통해 보간된 이득을 갖는 PID제어기를 제안한다. 전체 제어시스템은 기구학 제어기와 동역학을 고려한 동적제어기로 구성하였다. 동적제어기는 가변 이득을 가지는 PID 제어기로 구성하여, 추종 로봇의 대표적 질량에 따라 적절한 PID 이득을 유전 알고리즘으로 구하였다. 유전 알고리즘으로 구한 데이터를 기초로 신경회로망을 학습하여 추종 로봇이 임의의 질량을 갖더라도 최적의 PID 이득을 선정할 수 있었다. 모의실험에서 추종 로봇의 질량이 임의의 값으로 변화하는 경우, 신경회로망을 통해 보간된 이득을 갖는 PID 제어기가 고정된 이득을 가지는 PID 제어기에 비해 군집제어에서 추종 성능을 향상시키는 것을 확인하였다.

K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발 (Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

퍼지-뉴럴 제어기법에 의한 궤도차량의 동적 제어 (Dynamic Control of Track Vehicle Using Fuzzy-Neural Control Method)

  • 한성현;서운학;조길수;윤강섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.133-139
    • /
    • 1997
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is propored a learning controller consisting of two neural network-fuzzy based on independent resoning and a connection net with fixed weights to simply the neural network-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle

  • PDF

궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발 (Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle)

  • 서운학
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

신경회로망을 이용한 WMR의 가변제어기 설계 (Design of variable controller for WMR using a Neural Network)

  • 김규태;김성회;박종국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.157-160
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF

Design of PD controller for WMR using a Neural Network

  • Kim, Kyu-Tae;Kim, Sung-Hee;Park, Chong-Kug;Bae, Jun-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.180.5-180
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF