• 제목/요약/키워드: neural cell

검색결과 619건 처리시간 0.028초

혈관내에 배양한 신경줄기세포의 이식이 말초신경 재생에 미치는 영향 (Effect of Transplantation of Intravascular Cultured Neural Stem Cell upon Peripheral Nerve Regeneration)

  • 양영철;김우일;박중규;배기원
    • 생명과학회지
    • /
    • 제12권3호
    • /
    • pp.306-316
    • /
    • 2002
  • 흰쥐의 좌골신경을 절단한 후 혈관내에서 배양한 신경줄기세포를 이식하여 말초신경에서도 수초의 재생이 일어나는지를 형태 학적으로 규명하고 배양한 신경줄기 세포들로부터 분화한 Schwann cell들이 회복할 수 있는지를 조사하여 다음과 같은 결론을 얻었다. 이식한 20일 후 동맥내 배양한 신경줄기세포는 Schwann cell로 분화하여 신경섬유의 재생이 일어나기 시작하였다. Schwann cell은 증식 후 재수초화를 형성하기 위하여 다른 Schwann cell들로부터 여러 가지를 자극을 받고 있었으며 NGF 소견으로 볼 때 신경외막으로부터 기존의 Schwann cell로부터 신경줄기세포의 분화가 유도되었으며 PCNA 반응으로 볼 때도 기존의 신경섬유의 Schwann cell주위에서부터 증식이 일어났다. 미세구조적으로는 Schwann cell의 재수초화, 축삭내 사립체와 미세소관의 수의 증가를 관찰할 수 있었다.

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

연령별 지방 중간엽 유래 줄기세포의 신경세포로의 분화 능력 비교 (Comparison of Neural Cell Differentiation of Human Adipose Mesenchymal Stem Cells Derived from Young and Old Ages)

  • 조정윤;강성근;최인수;라정찬
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권4호
    • /
    • pp.227-237
    • /
    • 2009
  • 최근 골수와 혈액으로 유래된 중간엽 줄기세포와 비슷한 능력을 가지는 것으로 알려진 지방 유래 중간엽줄기세포가 새로운 세포 치료제로 떠오르고 있다. 하지만 줄기세포를 이용하여 치료하려는 질병은 나이가 들어감에 따라 발병하는 퇴행성 질환들이 대부분인데, 노화가 진행됨에 따라 줄기세포의 능력이 차이가 있다고 알려져 있다. 이에 본 연구에서는 노화가 일어남에 따라 발생되는 신경성 질환을 자가 유래 지방 중간엽 줄기세포를 이용하여 치료함에 있어서 노화가 진행됨에 따라 얻어진 지방줄기세포가 세포학적으로 변화는 없는지에 대해 줄기세포 성장능, 생존율과 신경세포로의 분화유도 능력을 비교하였다. 30대, 40대, 50대에서 사람 지방 유래 줄기세포를 분리 배양하여 연령별 계대에 따른 세포수와 생존율을 측정하고, 줄기세포 성장능력을 비교 분석하였고, 지방 줄기세포를 신경세포 배양 조건 하에서 10일 동안 배양하여 신경 분화능력을 연령별로 비교하였다. 실험결과, 세포수와 생존율, 세포 모양이 연령과 계대별에 의해 차이가 없다는 것을 확인하였다. 신경 분화 후 면역형광염색법을 통해 분석한 결과, 연령에 따른 신경 분화능력의 차이가 관찰되지 않았다. 분자 유전적학으로 신경세포 마커의 발현을 mRNA 수준에서 분석한 결과, 연령별 간의 차이가 몇 개의 유전자 발현을 제외하고는 차이가 발견되지 못했다. 하지만 계대가 진행될수록 50대군의 줄기세포에서 MAP2와 Sox2의 mRNA 발현이 30대군의 줄기세포에 비해 상대적으로 낮게 발현됨이 확인되었다. 결론적으로 자가 지방 중간엽 줄기세포의 신경세포 분화능력이 연령에 상관없이 차이가 없음이 관찰되었으며, 이는 나이 든 사람으로부터 얻어진 지방 줄기세포도 젊은 사람에서 얻어진 세포와 마찬가지 능력으로 자가 세포 치료제로 사용될 수 있다는 점을 말해주고 있다.

  • PDF

Forskolin Effect on the Lineage Specification of Trunk Neural Crest Cells in vitro

  • Jin, Eun-Jung
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.69-74
    • /
    • 2002
  • Recent evidence has suggested that trunk neural crest cell generally assumed to have equivalent differentiation potentials, demonstrate differentiation bias along the anterior/posterior axis. In amphibian and fish, neural crest cells give rise to three chromatophore types, melanophores, xantho-phores, and iridophores. Each pigment cell type has distinct characteristics but there is speculation about the cellular plasticity that exists among them. Neural crest cells migrate along specific routes, ventromedially and dorsolaterally. Neural crest cells that travel dorsolaterally are the first cells to begin migration in the axolotl and are the major contributors to the visible pigment pattern. Many factors and mechanisms that are responsible for guiding migratory neural crest cells along potential pathways or determining their fate remain unknown. A single lineage of the crest, which becomes restricted to one of the three pigment cell types, gives us the opportunity to examine the existence of neural crest stem cell populations and cellular plasticity. Study presented here showed results from recent in vitro studies designed to identify parameters influencing differentiation events of individual neural crest-derived pigment cell lineages. Melanophore production from neural crest explants originating from different levels along the anterior/posterior axis of wild type-axolotl embryos were compared and demonstrate that the differentiation of melanophores is enhanced in subpopulation of neural crest treated with forskolin. Forskolin (an adenylate cyclase activator) increases intracellular CAMP concentration and eventually activates the protein kinase-A signaling pathway. Melanophore number, melanin content, and tyrosinase activity in explants taken from the anterior-most region of the crest increased significantly in response to forskolin treatment. This study suggests implications of region specific influences and developmental regulation in the development of pigment pattern.

The Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells

  • Yoon, I Na;Hwang, Jae Sam;Lee, Joon Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.30-36
    • /
    • 2019
  • Numerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 $MAPK/p27^{kip1}$, suggesting that CopA3 inhibits toxin A-induced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.

In Vitro Expansion of Homogeneous Neural Precursor Cells Derived from Human Embryonic Stem Cells

  • Na, Deuk-Chae;Kim, Se-Hee;Choi, Won-Ik;Hwang, Hyun-Jin;Han, In-Bo;Kim, Jae-Hwan;Park, Keun-Hong;Chung, Hyung-Min;Choi, Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.267-272
    • /
    • 2007
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III ${\beta}$-tubulin and MAP2ab were observed Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.

Regulation of Neural Stem Cell Fate by Natural Products

  • Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.15-24
    • /
    • 2019
  • Neural stem cells (NSCs) can proliferate and differentiate into multiple cell types that constitute the nervous system. NSCs can be derived from developing fetuses, embryonic stem cells, or induced pluripotent stem cells. NSCs provide a good platform to screen drugs for neurodegenerative diseases and also have potential applications in regenerative medicine. Natural products have long been used as compounds to develop new drugs. In this review, natural products that control NSC fate and induce their differentiation into neurons or glia are discussed. These phytochemicals enable promising advances to be made in the treatment of neurodegenerative diseases.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: II. Generation of Specific Neurons from Neural Progenitor Cells Treated with BDNF and PDGF

  • Jo Hyeon-Jeong;Kim Eun-Yeong;Choe Gyeong-Hui;An So-Yeon;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.84-84
    • /
    • 2002
  • This study was to investigate generation of the specific neuronal cell in vitro from the neural progenitors derived from human embryonic stem (hES, MB03) cells. For the neural progenitor cell formation, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then for the differentiation into neuronal cells, neural progenitor cells were cultured in N2 medium (without bFGF) supplemented with brain derived neurotrophic factor (BDNF, 5 ng/㎖) or platelet derived growth factor-bb (pDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF